Contribution of persistent factors to yield gaps in high-yield irrigated maize

[1]  J. Specht,et al.  Soybean yield gaps and water productivity in the western U.S. Corn Belt , 2015 .

[2]  D. Lobell,et al.  A scalable satellite-based crop yield mapper , 2015 .

[3]  James E. Specht,et al.  Drivers of spatial and temporal variation in soybean yield and irrigation requirements in the western US Corn Belt , 2014 .

[4]  V. Sadras,et al.  How reliable are crop production data? Case studies in USA and Argentina , 2014, Food Security.

[5]  David B. Lobell,et al.  The use of satellite data for crop yield gap analysis , 2013 .

[6]  J. Wolf,et al.  Yield gap analysis with local to global relevance—A review , 2013 .

[7]  A. Viña,et al.  Comparison of different vegetation indices for the remote assessment of green leaf area index of crops , 2011 .

[8]  S. Irmak,et al.  High-yield irrigated maize in the Western U.S. Corn Belt: II. Irrigation management and crop water productivity , 2011 .

[9]  Kenneth G. Cassman,et al.  High-yield irrigated maize in the Western U.S. Corn Belt: I. On-farm yield, yield potential, and impact of agronomic practices , 2011 .

[10]  G. Velthof,et al.  Towards an agronomic assessment of N2O emissions: a case study for arable crops , 2010 .

[11]  David B. Lobell,et al.  Satellite evidence for yield growth opportunities in Northwest India , 2010 .

[12]  Toru Nozawa,et al.  The Detection and Attribution of Human Influence on Climate , 2009 .

[13]  C. Field,et al.  Crop yield gaps: their importance, magnitudes, and causes. , 2009 .

[14]  Kenneth G. Cassman,et al.  Limits to maize productivity in Western Corn-Belt: A simulation analysis for fully irrigated and rainfed conditions , 2009 .

[15]  Daniel T. Walters,et al.  Soil greenhouse gas fluxes and global warming potential in four high‐yielding maize systems , 2007 .

[16]  Brian L. Steward,et al.  Methodology to link production and environmental risks of precision nitrogen management strategies in corn , 2006 .

[17]  T. Arkebauer,et al.  Hybrid-maize—a maize simulation model that combines two crop modeling approaches , 2004 .

[18]  Kenneth G. Cassman,et al.  Meeting Cereal Demand While Protecting Natural Resources and Improving Environmental Quality , 2003 .

[19]  A. Viña,et al.  Remote estimation of leaf area index and green leaf biomass in maize canopies , 2003 .

[20]  J. I. Ortiz-Monasterio,et al.  Soil, climate, and management impacts on regional wheat productivity in Mexico from remote sensing , 2002 .

[21]  R. A. Fischer,et al.  Crop rotation, tillage and crop residue management for wheat and maize in the sub-humid tropical highlands: II. Maize and system performance , 2002 .

[22]  R. Fischer,et al.  Crop rotation, tillage and crop residue management for wheat and maize in the sub-humid tropical highlands , 2002 .

[23]  D. Duvick,et al.  Post–Green Revolution Trends in Yield Potential of Temperate Maize in the North‐Central United States , 1999 .

[24]  E. S. Oplinger,et al.  Environment Affects the Corn and Soybean Rotation Effect , 1997 .

[25]  David B. Lobell,et al.  Testing Remote Sensing Approaches for Assessing Yield Variability among Maize Fields , 2014 .

[26]  Jürgen Böhner,et al.  Land-Surface Parameters Specific to Topo-Climatology , 2009 .

[27]  L. T. Evans Crop evolution, adaptation, and yield , 1993 .