Effective optical properties of absorbing nanoporous and nanocomposite thin films

This paper aims at developing numerically validated models for predicting the through-plane effective index of refraction and absorption index of nanocomposite thin films. First, models for the effective optical properties of such materials are derived from previously reported analysis applying the volume averaging theory (VAT) to Maxwell’s equations. The transmittance and reflectance of nanoporous thin films are computed by solving Maxwell’s equations and the associated boundary conditions at all interfaces using finite element methods. The effective optical properties of the films are retrieved by minimizing the root mean square of the relative errors between the computed and theoretical transmittance and reflectance. Nanoporous thin films made of SiO2 and TiO2 consisting of cylindrical nanopores and nanowires are investigated for different diameters and various porosities. Similarly, electromagnetic wave transport through dielectric medium with embedded metallic nanowires are simulated. The numerical r...

[1]  Optical functions of low-k materials for interlayer dielectrics , 2001 .

[2]  J. Hedrick,et al.  Nanofoam Porosity Measured by Infrared Spectroscopy and Refractive Index , 1996 .

[3]  R. Loo,et al.  Color-sensitive photodetector based on porous silicon superlattices , 1997 .

[4]  Yi Li,et al.  Nanoscale silicon microcavities for biosensing , 2001 .

[5]  Patrick Ferrand,et al.  Optical losses in porous silicon waveguides in the near-infrared: Effects of scattering , 2000 .

[6]  W. Theiß,et al.  Optical properties of porous silicon , 1997 .

[7]  W. Steen Absorption and Scattering of Light by Small Particles , 1999 .

[8]  S. Leppävuori,et al.  Optical properties of porous silicon. Part II: Fabrication and investigation of multilayer structures , 2004 .

[9]  J. Garnett,et al.  Colours in Metal Glasses and in Metallic Films. , 1904, Proceedings of the Royal Society of London.

[10]  D W Thompson,et al.  Infrared ellipsometry characterization of porous silicon bragg reflectors. , 2001, Applied optics.

[11]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[12]  Maxwell's Equations in Two-Phase Systems II: Two-Equation Model , 2000 .

[13]  Gultekin Gulsen,et al.  Thermal optical properties of TiO2 films , 2002 .

[14]  Hans Lüth,et al.  Investigation and design of optical properties of porosity superlattices , 1995 .

[15]  G. Lerondel,et al.  Quantitative analysis of the light scattering effect on porous silicon optical measurements , 1997 .

[16]  D. Bradley,et al.  Nanoporous TiO2 solar cells sensitised with a fluorene?thiophene copolymer , 2004 .

[17]  Trevor M. Benson,et al.  Porous silicon multilayer optical waveguides , 1996 .

[18]  S. Whitaker,et al.  Maxwell’s Equations in Two-Phase Systems I: Local Electrodynamic Equilibrium , 2000 .

[19]  C. Brinker Sol-gel science , 1990 .

[20]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[21]  M. Brewster Thermal Radiative Transfer and Properties , 1992 .

[22]  C. Brinker,et al.  Self-assembled aerogel-like low dielectric constant films , 2001 .

[23]  Hans Arwin,et al.  Ellipsometric characterization of anisotropic porous silicon Fabry–Pérot filters and investigation of temperature effects on capillary condensation efficiency , 1999 .

[24]  M. Pinar Mengüç,et al.  Radiative Transfer in Dispersed Media , 1989 .

[25]  M. Tomozawa,et al.  Porous silica materials as low-k dielectrics for electronic and optical interconnects , 2001 .

[26]  J. M. Martínez-Duart,et al.  Porous silicon multilayer stacks for optical biosensing applications , 2004, Microelectron. J..

[27]  J. Hedrick,et al.  Nanofoam porosity by infrared spectroscopy , 1995 .

[28]  Robert W. Zimmerman,et al.  Formula for the conductivity of a two-component material based on the reciprocity theorem , 1998 .

[29]  V. Timoshenko,et al.  Dichroic Bragg reflectors based on birefringent porous silicon , 2001 .

[30]  H. Hillhouse,et al.  Rhombohedral structure of highly ordered and oriented : Self-assembled nanoporous silica thin films , 2006 .

[31]  M. Modest Radiative heat transfer , 1993 .

[32]  Laurent Pilon,et al.  Effective optical properties of non-absorbing nanoporous thin films , 2006, Thin Solid Films.

[33]  Self-aligned porous silicon optical waveguides , 1997 .

[34]  Leon S. Lasdon,et al.  Design and Testing of a Generalized Reduced Gradient Code for Nonlinear Programming , 1978, TOMS.

[35]  Raúl J. Martín-Palma,et al.  Biofunctionalization of surfaces of nanostructured porous silicon , 2003 .

[36]  Yunfeng Lu,et al.  Evaporation-Induced Self-Assembly: Nanostructures Made Easy** , 1999 .

[37]  Laurent Pilon,et al.  Optical properties of porous silicon. Part III: Comparison of experimental and theoretical results , 2006, Optical Materials.

[38]  R. Hayward,et al.  General Predictive Syntheses of Cubic, Hexagonal, and Lamellar Silica and Titania Mesostructured Thin Films§ , 2002 .

[39]  A. Beroual,et al.  Effective dielectric constant of periodic composite materials , 1996 .

[40]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[41]  Bruno Sareni,et al.  Effective dielectric constant of random composite materials , 1996 .

[42]  Lorenzo Pavesi,et al.  Application to optical components of dielectric porous silicon multilayers , 1995 .

[43]  Michael Grätzel,et al.  TiO2 pore-filling and its effect on the efficiency of solid-state dye-sensitized solar cells , 2006 .