High‐redshift formation and evolution of central massive objects – II. The census of BH seeds

We present results of simulations aimed at tracing the formation of nuclear star clusters (NCs) and black hole (BH) seeds in the framework of the currentcold dark matter (� CDM) cosmogony. These BH seeds are considered to be progenitors of the supermassive BHs that inhabit today's galaxies. We focus on two mechanisms for the formation of BHs at high redshifts: as end-products of (1) Population III stars in metal-free haloes, and (2) runaway stellar collisions in metal-poor NCs. Our model tracks the chemical, radiative and mechanical feedback of stars on the baryonic component of the evolving haloes. This procedure allows us to evaluate when and where the conditions for BH formation are met, and to trace the emergence of BH seeds arising from the dynamical channel, in a cosmological context. BHs start to appear already at redshift ∼30 as remnants of Population III stars. The efficiency of this mechanism begins decreasing once feedbacks become increasingly important. Around redshift z ∼ 15, BHs mostly form in the centre of mildly metal-enriched haloes inside dense NCs. The seed BHs that form along the two pathways have at birth a mass of around 100-1000 M� . The occupation fraction of BHs is a function of both halo mass and mass growth rate: at a given redshift, heavier and faster growing haloes have a higher chance to form a native BH, or to acquire an inherited BH via merging of another system. With decreasing z, the probability of finding a BH shifts towards progressively higher mass halo intervals. This is due to the fact that, at later cosmic times, low-mass systems rarely form a seed, and already formed BHs are deposited into larger mass systems due to hierarchical mergers. Our model predicts that at z = 0, all haloes above 10 11 Mshould host a BH (in agreement with observational results), most probably inherited during their lifetime. Haloes less massive than 10 9 Mhave a higher probability to host a native BH, but their occupation fraction decreases below 10 per cent.

[1]  N. Shaviv,et al.  A lower limit on the halo mass to form supermassive black holes , 2011, 1107.3562.

[2]  Jemma Wolcott-Green Zolt'an Haiman Greg L. Bryan Photodissociation of H2 in protogalaxies: modelling self‐shielding in three‐dimensional simulations , 2011, 1106.3523.

[3]  T. Quinn,et al.  THE FIRST MASSIVE BLACK HOLE SEEDS AND THEIR HOSTS , 2011, 1104.3858.

[4]  R. Klessen,et al.  GRAVITATIONAL FRAGMENTATION IN TURBULENT PRIMORDIAL GAS AND THE INITIAL MASS FUNCTION OF POPULATION III STARS , 2010, 1006.1508.

[5]  S. Khochfar,et al.  The interplay between chemical and mechanical feedback from the first generation of stars , 2010, 1011.3999.

[6]  M. Milosavljevic,et al.  FRAGMENTATION IN THE FIRST GALAXIES , 2010, 1004.0267.

[7]  M. Volonteri,et al.  Quasi‐stars and the cosmic evolution of massive black holes , 2010, 1003.5220.

[8]  B. Ciardi,et al.  The transition from population III to population II-I star formation , 2010, 1003.4992.

[9]  Marta Volonteri,et al.  Formation of supermassive black holes , 2010, 1003.4404.

[10]  M. Colpi,et al.  High-redshift formation and evolution of central massive objects - I. Model description , 2010, 1001.3874.

[11]  M. Volonteri,et al.  Gravitational recoil: effects on massive black hole occupation fraction over cosmic time , 2010, 1001.1743.

[12]  L. Mayer,et al.  Direct formation of supermassive black holes via multi-scale gas inflows in galaxy mergers , 2009, Nature.

[13]  M. Khlopov Primordial black holes , 2007, 0801.0116.

[14]  A. Perego,et al.  Dual black holes in merger remnants – II. Spin evolution and gravitational recoil , 2009, 0910.5729.

[15]  A. Perego,et al.  Mass and spin co-evolution during the alignment of a black hole in a warped accretion disc , 2009, 0907.3742.

[16]  Matthew J. Turk,et al.  The Formation of Population III Binaries from Cosmological Initial Conditions , 2009, Science.

[17]  Cambridge,et al.  Growing the first bright quasars in cosmological simulations of structure formation , 2009, 0905.1689.

[18]  Ralf Bender,et al.  THE ASTROPHYSICAL JOURNAL Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE M–σ AND M–L RELATIONS IN GALACTIC BULGES, AND DETERMINATIONS OF THEIR INTRINSIC SCATTER , 2008 .

[19]  M. Stiavelli,et al.  FORMATION RATES OF POPULATION III STARS AND CHEMICAL ENRICHMENT OF HALOS DURING THE REIONIZATION ERA , 2009, 0901.0711.

[20]  M. Colpi,et al.  PAIRING OF SUPERMASSIVE BLACK HOLES IN UNEQUAL-MASS GALAXY MERGERS , 2008, 0811.0615.

[21]  Bernadetta Devecchi,et al.  FORMATION OF THE FIRST NUCLEAR CLUSTERS AND MASSIVE BLACK HOLES AT HIGH REDSHIFT , 2008, 0810.1057.

[22]  Z. Haiman,et al.  THE ASSEMBLY OF SUPERMASSIVE BLACK HOLES AT HIGH REDSHIFTS , 2008, 0807.4702.

[23]  B. O’Shea,et al.  DARK MATTER ANNIHILATION AND PRIMORDIAL STAR FORMATION , 2008, 0807.3769.

[24]  B. O’Shea,et al.  THREE MODES OF METAL-ENRICHED STAR FORMATION IN THE EARLY UNIVERSE , 2008, 0806.1653.

[25]  J. Vink Mass loss and the evolution of massive stars , 2008 .

[26]  Z. Haiman,et al.  Fluctuations in the high-redshift Lyman–Werner background: close halo pairs as the origin of supermassive black holes , 2008, 0810.0014.

[27]  P. Bodenheimer,et al.  Stellar Structure of Dark Stars: A First Phase of Stellar Evolution Resulting from Dark Matter Annihilation , 2008, 0806.0617.

[28]  Massive Stars as Cosmic Engines , 2008 .

[29]  R. Klessen,et al.  Open questions in the study of population III star formation , 2008, Proceedings of the International Astronomical Union.

[30]  Z. Haiman,et al.  Can Supermassive Black Holes Form in Metal-enriched High-Redshift Protogalaxies? , 2008, 0804.3141.

[31]  M. Halpern,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: LIKELIHOODS AND PARAMETERS FROM THE WMAP DATA , 2008, 0803.0586.

[32]  F. Iocco Dark Matter Capture and Annihilation on the First Stars: Preliminary Estimates , 2008, 0802.0941.

[33]  B. O’Shea,et al.  The Destruction of Cosmological Minihalos by Primordial Supernovae , 2008, 0801.3698.

[34]  P. Marshall,et al.  AMUSE-Virgo. I. Supermassive Black Holes in Low-Mass Spheroids , 2007, 0711.2073.

[35]  C. McKee,et al.  The Formation of the First Stars. II. Radiative Feedback Processes and Implications for the Initial Mass Function , 2007, 0711.1377.

[36]  B. O’Shea,et al.  Population III Star Formation in a ΛCDM Universe. II. Effects of a Photodissociating Background , 2007, 0706.4416.

[37]  R. Klessen,et al.  The First Stellar Cluster , 2007, 0706.0613.

[38]  K. Freese,et al.  Dark matter and the first stars: a new phase of stellar evolution. , 2007, Physical review letters.

[39]  C. Rovelli Quantum gravity , 2004, Scholarpedia.

[40]  Li-Xin Li Probing the Cosmic Metallicity Evolution with Gamma-Ray Bursts , 2007 .

[41]  A. de Koter,et al.  On the evolution and fate of super-massive stars , 2007, 0710.1181.

[42]  P. Natarajan,et al.  The evolution of massive black hole seeds , 2007, 0709.0529.

[43]  G. Gavazzi,et al.  The census of nuclear activity of late-type galaxies in the Virgo cluster , 2007, 0707.0999.

[44]  Richard A. Matzner,et al.  Binary black holes: Spin dynamics and gravitational recoil , 2007, 0706.2541.

[45]  J. Schnittman Retaining Black Holes with Very Large Recoil Velocities , 2007, 0706.1548.

[46]  Y. Zlochower,et al.  Maximum gravitational recoil. , 2007, Physical review letters.

[47]  A. Buonanno,et al.  The Distribution of Recoil Velocities from Merging Black Holes , 2007, astro-ph/0702641.

[48]  S. McWilliams,et al.  Modeling Kicks from the Merger of Nonprecessing Black Hole Binaries , 2007, astro-ph/0702390.

[49]  Astronomy,et al.  The mass function of high-redshift seed black holes , 2007, astro-ph/0702340.

[50]  José A. González,et al.  Supermassive recoil velocities for binary black-hole mergers with antialigned spins. , 2007, Physical review letters.

[51]  Erik Schnetter,et al.  Recoil velocities from equal-mass binary-black-hole mergers. , 2007, Physical review letters.

[52]  D. Vanbeveren,et al.  The Evolution of Very Massive Stars , 2007, astro-ph/0701334.

[53]  Department of Physics,et al.  The spin and shape of dark matter haloes in the Millennium simulation of a Λ cold dark matter universe , 2006 .

[54]  R. Hirschi Very low-metallicity massive stars: - Pre-SN evolution models and primary nitrogen production , 2006, astro-ph/0608170.

[55]  M. Rees,et al.  Quasars at z = 6: The Survival of the Fittest , 2006, astro-ph/0607093.

[56]  Cambridge,et al.  Supermassive black hole formation during the assembly of pre-galactic discs , 2006, astro-ph/0606159.

[57]  K. Omukai,et al.  Fragmentation of star-forming clouds enriched with the first dust , 2006, astro-ph/0603766.

[58]  M. Rees,et al.  Formation of supermassive black holes by direct collapse in pre-galactic haloes , 2006, astro-ph/0602363.

[59]  J. Silk,et al.  Pregalactic Black Hole Formation with an Atomic Hydrogen Equation of State , 2006, astro-ph/0601714.

[60]  J. Louko Quantum Gravity: From Theory to Experimental Search , 2005 .

[61]  J. Shull,et al.  Critical Metallicity and Fine-Structure Emission of Primordial Gas Enriched by the First Stars , 2005, astro-ph/0509101.

[62]  P. Shapiro,et al.  The H II Region of the First Star , 2005, astro-ph/0507684.

[63]  Heidelberg,et al.  Runaway collisions in young star clusters – I. Methods and tests , 2005, astro-ph/0503129.

[64]  Heidelberg,et al.  Runaway collisions in young star clusters - II. Numerical results , 2005, astro-ph/0503130.

[65]  K. Omukai,et al.  Thermal and Fragmentation Properties of Star-forming Clouds in Low-Metallicity Environments , 2005, astro-ph/0503010.

[66]  B. Ciardi,et al.  The First Cosmic Structures and Their Effects , 2004, astro-ph/0409018.

[67]  N. Yoshida,et al.  The Structure and Evolution of Early Cosmological H II Regions , 2004, astro-ph/0406280.

[68]  P. Hut,et al.  Formation of massive black holes through runaway collisions in dense young star clusters , 2004, Nature.

[69]  Hans-Walter Rix,et al.  On the Black Hole Mass-Bulge Mass Relation , 2004, astro-ph/0402376.

[70]  A. University,et al.  Massive black hole seeds from low angular momentum material , 2003, astro-ph/0311487.

[71]  Bernard Carr Primordial Black Holes as a Probe of Cosmology and High Energy Physics , 2003 .

[72]  A. Loeb,et al.  The formation of the first low-mass stars from gas with low carbon and oxygen abundances , 2003, Nature.

[73]  M. Norman,et al.  Radiation Hydrodynamic Evolution of Primordial H II Regions , 2003, astro-ph/0310283.

[74]  Matthew Bierbaum,et al.  Formation of Massive Black Holes in Dense Star Clusters. I. Mass Segregation and Core Collapse , 2003, astro-ph/0308449.

[75]  K. Omukai,et al.  Formation of the First Stars by Accretion , 2003 .

[76]  N. Yoshida,et al.  Simulations of Early Structure Formation: Primordial Gas Clouds , 2003, astro-ph/0301645.

[77]  R. Schneider,et al.  The Detectability of the First Stars and Their Cluster Enrichment Signatures , 2003, astro-ph/0301628.

[78]  Chris L. Fryer,et al.  How Massive Single Stars End Their Life , 2002, astro-ph/0212469.

[79]  Piero Madau,et al.  The Assembly and Merging History of Supermassive Black Holes in Hierarchical Models of Galaxy Formation , 2002, astro-ph/0207276.

[80]  S. Tremaine,et al.  The Slope of the Black Hole Mass versus Velocity Dispersion Correlation , 2002, astro-ph/0203468.

[81]  Simon F. Portegies Zwart,et al.  The Runaway Growth of Intermediate-Mass Black Holes in Dense Star Clusters , 2002, astro-ph/0201055.

[82]  D. Schaerer On the properties of massive Population III stars and metal-free stellar populations , 2001, astro-ph/0110697.

[83]  S. E. Woosley,et al.  The Nucleosynthetic Signature of Population III , 2002 .

[84]  T. Quinn,et al.  Predicting the Number, Spatial Distribution, and Merging History of Dark Matter Halos , 2001, astro-ph/0109322.

[85]  T. Theuns,et al.  The pinocchio algorithm: pinpointing orbit-crossing collapsed hierarchical objects in a linear density field , 2001, astro-ph/0109323.

[86]  V. Narayanan,et al.  A Survey of z > 5.8 Quasars in the Sloan Digital Sky Survey. I. Discovery of Three New Quasars and the Spatial Density of Luminous Quasars at z ∼ 6 , 2001, astro-ph/0108063.

[87]  P. Coppi,et al.  The Fragmentation of Pre-enriched Primordial Objects , 2001, astro-ph/0104271.

[88]  Martin J. Rees,et al.  ApJ, in press Preprint typeset using L ATEX style emulateapj v. 04/03/99 MASSIVE BLACK HOLES AS POPULATION III REMNANTS , 2001 .

[89]  V. Narayanan,et al.  The Merger History of Supermassive Black Holes in Galaxies , 2001, astro-ph/0101196.

[90]  G. Bryan,et al.  Simulations of Pregalactic Structure Formation with Radiative Feedback , 2000, astro-ph/0007198.

[91]  Ralf Bender,et al.  A Relationship between Nuclear Black Hole Mass and Galaxy Velocity Dispersion , 2000, astro-ph/0006289.

[92]  D. Merritt,et al.  A Fundamental Relation between Supermassive Black Holes and Their Host Galaxies , 2000, astro-ph/0006053.

[93]  S. Tremaine,et al.  The Demography of Massive Dark Objects in Galaxy Centers , 1997, astro-ph/9708072.

[94]  Max Tegmark,et al.  How Small Were the First Cosmological Objects? , 1996, astro-ph/9603007.

[95]  D. Eisenstein,et al.  Origin of quasar progenitors from the collapse of low spin cosmological perturbations , 1994, astro-ph/9401016.

[96]  A. Loeb,et al.  Collapse of primordial gas clouds and the formation of quasar black holes , 1994, astro-ph/9401026.

[97]  M. Rees,et al.  The formation of nuclei in newly formed galaxies and the evolution of the quasar population , 1993 .

[98]  J. Bardeen,et al.  The Lense-Thirring Effect and Accretion Disks around Kerr Black Holes , 1975 .

[99]  A. Toomre,et al.  On the gravitational stability of a disk of stars , 1964 .

[100]  M. Schmidt The Rate of Star Formation , 1959 .