Characteristics of eco-friendly perovskite solar cell with moth-eye nanostructure array

[1]  Muhammad Imran Malik,et al.  Numerical optimization of (FTO/ZnO/CdS/CH3NH3SnI3/GaAs/Au) perovskite solar cell using solar capacitance simulator with efficiency above 23% predicted , 2021, Optical and Quantum Electronics.

[2]  C. Du,et al.  Improved optical properties of perovskite solar cells by introducing Ag nanopartices and ITO AR layers , 2021, Scientific Reports.

[3]  E. Sargent,et al.  One-Step Synthesis of SnI2·(DMSO)x Adducts for High-Performance Tin Perovskite Solar Cells. , 2021, Journal of the American Chemical Society.

[4]  S. Rahman,et al.  Numerical study of high performance HTL-free CH3NH3SnI3-based perovskite solar cell by SCAPS-1D , 2021, AIP Advances.

[5]  Jun Hee Lee,et al.  Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells , 2021, Nature.

[6]  V. Sebastian,et al.  Comprehensive device modelling and performance analysis of MASnI3 based perovskite solar cells with diverse ETM, HTM and back metal contacts , 2021 .

[7]  P. Patel Device simulation of highly efficient eco-friendly CH3NH3SnI3 perovskite solar cell , 2021, Scientific reports.

[8]  A. Hajjiah,et al.  Effect of interface defects on high efficient perovskite solar cells , 2021 .

[9]  H. Heidarzadeh,et al.  Design of an LSPR-Enhanced Ultrathin CH3NH3PbX3 Perovskite Solar Cell Incorporating Double and Triple Coupled Nanoparticles , 2021, Journal of Electronic Materials.

[10]  Md Ali Ashraf,et al.  Effect of different device parameters on tin-based perovskite solar cell coupled with In2S3 electron transport layer and CuSCN and Spiro-OMeTAD alternative hole transport layers for high-efficiency performance , 2020, 2012.09042.

[11]  T. S. Soliman,et al.  Structural, linear and nonlinear optical properties of Ni nanoparticles – Polyvinyl alcohol nanocomposite films for optoelectronic applications , 2020, Optical Materials.

[12]  Mostafa M. Abd El-Samie,et al.  Effect of temperature on the stability and optical properties of SiO2-water nanofluids for hybrid photovoltaic/thermal applications , 2020, Applied Thermal Engineering.

[13]  Sh.I. Elkalashy,et al.  Structural, thermal, and linear optical properties of SiO 2 nanoparticles dispersed in polyvinyl alcohol nanocomposite films , 2020 .

[14]  Zhanhu Guo,et al.  Effects of Transition Metal Substituents on Interfacial and Electronic Structure of CH3NH3PbI3/TiO2 Interface: A First-Principles Comparative Study , 2019, Nanomaterials.

[15]  King-Fu Lin,et al.  Boosting the ultra-stable unencapsulated perovskite solar cells by using montmorillonite/CH3NH3PbI3 nanocomposite as photoactive layer , 2019, Energy & Environmental Science.

[16]  Liang Shen,et al.  Third generation photovoltaic cells based on photonic crystals , 2019, Journal of Materials Chemistry C.

[17]  Kechen Wu,et al.  Predicted photovoltaic performance of lead-based hybrid perovskites under the influence of a mixed-cation approach: theoretical insights , 2019, Journal of Materials Chemistry C.

[18]  Mohamed Hussein,et al.  Characteristics of highly efficient star-shaped nanowires solar cell , 2018, Journal of Photonics for Energy.

[19]  Cheng Yan,et al.  Insight into lead-free organic-inorganic hybrid perovskites for photovoltaics and optoelectronics: A first-principles study , 2018, Organic Electronics.

[20]  S. Khan,et al.  Enhanced optical properties of Cu2O anchored on reduced graphene oxide (rGO) sheets , 2018, Journal of physics. Condensed matter : an Institute of Physics journal.

[21]  B. Marí,et al.  Effect of Cu2O hole transport layer and improved minority carrier life time on the efficiency enhancement of Cu2NiSnS4 based experimental solar cell , 2018, Journal of Renewable and Sustainable Energy.

[22]  Anders Hagfeldt,et al.  Perovskite Solar Cells: From the Atomic Level to Film Quality and Device Performance. , 2018, Angewandte Chemie.

[23]  Mohammad Ali Mohebpour,et al.  DFT analysis and FDTD simulation of CH3NH3PbI3−xClx mixed halide perovskite solar cells: role of halide mixing and light trapping technique , 2017, 1704.06702.

[24]  D. Savastru,et al.  Optical Analysis of a ZnO/Cu2O Subcell in a Silicon-Based Tandem Heterojunction Solar Cell , 2017 .

[25]  Omar A. M. Abdelraouf,et al.  Towards nanostructured perovskite solar cells with enhanced efficiency: Coupled optical and electrical modeling , 2016 .

[26]  Chunjoong Kim,et al.  Investigation of chlorine-mediated microstructural evolution of CH3NH3PbI3(Cl) grains for high optoelectronic responses , 2016 .

[27]  E. Alarousu,et al.  Ultrathin Cu2O as an efficient inorganic hole transporting material for perovskite solar cells. , 2016, Nanoscale.

[28]  J. Hoogenboom,et al.  Subnanometer-accuracy optical distance ruler based on fluorescence quenching by transparent conductors , 2016 .

[29]  S. Uchida,et al.  Surface Treatment of the Compact TiO2 Layer for Efficient Planar Heterojunction Perovskite Solar Cells , 2015 .

[30]  G. Boschloo,et al.  Improved morphology control using a modified two-step method for efficient perovskite solar cells. , 2014, ACS applied materials & interfaces.

[31]  B. Saunders,et al.  Third-generation solar cells: a review and comparison of polymer:fullerene, hybrid polymer and perovskite solar cells , 2014 .

[32]  Sandeep Kumar Pathak,et al.  Lead-free organic–inorganic tin halide perovskites for photovoltaic applications , 2014 .

[33]  Robert P. H. Chang,et al.  Lead-free solid-state organic–inorganic halide perovskite solar cells , 2014, Nature Photonics.

[34]  Paolo Umari,et al.  Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 Perovskites for Solar Cell Applications , 2014, Scientific Reports.

[35]  S. Christiansen,et al.  Determination of the effective refractive index of nanoparticulate ITO layers. , 2013, Optics express.

[36]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[37]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[38]  Xiaodong Wang,et al.  Optical Constants of Crystallized TiO2 Coatings Prepared by Sol-Gel Process , 2013, Materials.

[39]  A. Amassian,et al.  Electric field-induced hole transport in copper(I) thiocyanate (CuSCN) thin-films processed from solution at room temperature. , 2013, Chemical communications.

[40]  Ningfeng Huang,et al.  Broadband absorption of semiconductor nanowire arrays for photovoltaic applications , 2012 .

[41]  M. Grätzel,et al.  Electronic and Optical Properties of the Spiro-MeOTAD Hole Conductor in Its Neutral and Oxidized Forms: A DFT/TDDFT Investigation , 2011 .

[42]  Wei E. I. Sha,et al.  Optical and electrical properties of efficiency enhanced polymer solar cells with Au nanoparticles in a PEDOT–PSS layer , 2011 .

[43]  W. Su,et al.  Exploiting optical properties of P3HT:PCBM films for organic solar cells with semitransparent anode , 2010 .

[44]  T. Diana,et al.  On the optical properties of SnO2 thin films prepared by sol-gel method , 2010 .

[45]  M. Povinelli,et al.  Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications. , 2009, Optics express.

[46]  S. Salehizadeh,et al.  Effect of NiO content on the optical band gap, refractive index, and density of TeO2–V2O5–NiO glasses , 2009 .

[47]  Jef Poortmans,et al.  Thin Film Solar Cells: Fabrication, Characterization and Applications , 2006 .

[48]  Yu Hang Leung,et al.  Optical properties of ZnO nanostructures. , 2006, Small.

[49]  K. Zweibel,et al.  High-Efficiency CdTe and CIGS Thin-Film Solar Cells: Highlights and Challenges , 2006, 2006 IEEE 4th World Conference on Photovoltaic Energy Conference.

[50]  A. M. Rao,et al.  Optical properties of C60 and related materials , 1996 .

[51]  A. Otto,et al.  Optical and electron-energy-loss spectroscopy of GeS, GeSe, SnS, and SnSe single crystals , 1977 .

[52]  Justin Schwartz Engineering , 1929, Nature.

[53]  Tsutomu Miyasaka,et al.  Organic-Inorganic Halide Perovskite Photovoltaics , 2016 .

[54]  D. Lynch,et al.  Handbook of Optical Constants of Solids , 1985 .