Recent search for new superhard materials: Go nano!

High elastic moduli do not guarantee high hardness because upon finite shear electronic instabilities often occur that result in transformation to softer phases. Therefore, the author concentrates on the extrinsically superhard nanostructured materials, which are the most promising. Decreasing crystallite size results in strengthening and hardening because the grain boundaries impede the plasticity (e.g., Hall–Petch strengthening in case of dislocation activity). However, this hardening is limited to a crystallite size down to 10–15 nm below which softening due to grain boundary shear dominates. This softening can be reduced by forming low energy grain boundaries or a strong interfacial layer. In such a way, much higher hardness enhancement can be achieved. The emphasis will be on the understanding of the mechanisms of the hardness enhancement. A special section deals with examples of the present industrial applications of such coatings on tools for machining in order to illustrate that these materials ar...

[1]  Douglas C. Hofmann,et al.  Designing metallic glass matrix composites with high toughness and tensile ductility , 2008, Nature.

[2]  Gang Chen,et al.  Thermal conductivity of titanium aluminum silicon nitride coatings deposited by lateral rotating cathode arc , 2013 .

[3]  A. Fischer-Cripps,et al.  Critical review of claims for ultra-hardness in nanocomposite coatings , 2012 .

[4]  On the Structural Integrity of the Nano-PVD Coatings Applied on Cutting Tools , 2009 .

[5]  K. Jacobsen,et al.  Softening of nanocrystalline metals at very small grain sizes , 1998, Nature.

[6]  R. F. Zhang,et al.  Friedel oscillations are limiting the strength of superhard nanocomposites and heterostructures. , 2009, Physical review letters.

[7]  P. Benes,et al.  Thermal properties of cutting tool coatings at high temperatures , 2012 .

[8]  A. Kovács,et al.  Self organised formation of layered structure in co-deposited Al–C thin films , 2004 .

[9]  Veprek,et al.  Effect of grain boundaries on the Raman spectra, optical absorption, and elastic light scattering in nanometer-sized crystalline silicon. , 1987, Physical review. B, Condensed matter.

[10]  J. Procházka,et al.  Conditions required for achieving superhardness of ≥45 GPa in nc-TiN/a-Si3N4 nanocomposites , 2004 .

[11]  S. Lehoczky,et al.  Strength enhancement in thin‐layered Al‐Cu laminates , 1978 .

[12]  Konstantinos-Dionysios Bouzakis,et al.  Wear of Tools Coated with Various PVD Films: Correlation with Impact Test Results by Means of FEM Simulations , 2007 .

[13]  E. Hall,et al.  The Deformation and Ageing of Mild Steel: III Discussion of Results , 1951 .

[14]  V. Braic,et al.  Nanostructured multi-element (TiZrNbHfTa)N and (TiZrNbHfTa)C hard coatings , 2012 .

[15]  W. Lew,et al.  Toughening effect of Ni on nc-CrAlN/a-SiNx hard nanocomposite , 2013 .

[16]  Fangfang Zhang,et al.  Electronegativity identification of novel superhard materials. , 2008, Physical review letters.

[17]  B. Pécz,et al.  Peculiar lamellar structure in Al single crystals grown in oxygen-doped Al and Al−Sn thin films , 1994 .

[18]  M. Gu,et al.  Study on the superhardness mechanism of Ti–Si–N nanocomposite films: Influence of the thickness of the Si3N4 interfacial phase , 2005 .

[19]  Jien-Wei Yeh,et al.  Inhibition of grain coarsening up to 1000 °C in (AlCrNbSiTiV)N superhard coatings , 2010 .

[20]  M. Sebastiani,et al.  Effect of composition on mechanical behaviour of diamond-like carbon coatings modified with titanium , 2011 .

[21]  W. Lew,et al.  Hard Yet Tough Ceramic Coating: Not a Dream Any More—I. via Nanostructured Multilayering , 2012 .

[22]  I. Petrov,et al.  Transmission electron microscopy studies of microstructural evolution, defect structure, and phase transitions in polycrystalline and epitaxial Ti1-xAlxN and TiN films grown by reactive magnetron sputter deposition , 1991 .

[23]  C. Mitterer,et al.  Thermally induced self-hardening of nanocrystalline Ti–B–N thin films , 2006 .

[24]  S. Pugh XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals , 1954 .

[25]  G. Radnóczi,et al.  Structural, electrical and magnetic properties of carbon–nickel composite thin films , 2005 .

[26]  M. Döbeli,et al.  Pulse enhanced electron emission (P3e™) arc evaporation and the synthesis of wear resistant Al–Cr–O coatings in corundum structure , 2007 .

[27]  R. F. Zhang,et al.  Stability and strength of transition-metal tetraborides and triborides. , 2012, Physical review letters.

[28]  J. Yeh,et al.  Evolution of structure and properties of multi-component (AlCrTaTiZr)Ox films , 2010 .

[29]  M. Herrmann,et al.  Ternary and quarternary TiSiN and TiSiCN nanocomposite coatings obtained by Chemical Vapor Deposition , 2013 .

[30]  W. Lew,et al.  Toward hard yet tough CrAlSiN coatings via compositional grading , 2013 .

[31]  T. Cselle,et al.  Today's applications and future developments of coatings for drills and rotating cutting tools , 1995 .

[32]  Lars Hultman,et al.  Microstructural design of hard coatings , 2006 .

[33]  J. Schneider,et al.  Experimental and computational study on the phase stability of Al-containing cubic transition metal nitrides , 2010 .

[34]  P. Mayrhofer,et al.  Structure and phase evolution of Cr–Al–N coatings during annealing , 2008 .

[35]  C. Ziebert,et al.  Hard multilayer coatings containing TiN and/or ZrN: A review and recent progress in their nanoscale characterization , 2006 .

[36]  J. Procházka,et al.  The issue of the reproducibility of deposition of superhard nanocomposites with hardness of ≥50 GPa , 2006 .

[37]  D. Parks,et al.  Non-linear finite element constitutive modeling of indentation into super- and ultrahard materials: The plastic deformation of the diamond tip and the ratio of hardness to tensile yield strength of super- and ultrahard nanocomposites , 2009 .

[38]  A. Argon,et al.  Design of ultrahard materials: Go nano! , 2010 .

[39]  N. Jennett,et al.  Higher accuracy analysis of instrumented indentation data obtained with pointed indenters , 2008 .

[40]  S. Vepřek,et al.  The formation and role of interfaces in superhard nc-MenN/a-Si3N4 nanocomposites , 2007 .

[41]  P. Barna,et al.  Fundamental structure forming phenomena of polycrystalline films and the structure zone models , 1998 .

[42]  John J. Lewandowski,et al.  Mechanical Properties of Bulk Metallic Glasses , 2007 .

[43]  Xianting Zeng,et al.  Oxidation of Ni-toughened nc-TiN/a-SiN_x nanocomposite thin films , 2005 .

[44]  C. Mitterer,et al.  Self-organized nanostructures in the Ti–Al–N system , 2003 .

[45]  S. Vepřek,et al.  Possible role of oxygen impurities in degradation of Nc-TiN/a-Si3N4 nanocomposites , 2005 .

[46]  A. Montagne,et al.  Comparison of Al-Si-N nanocomposite coatings deposited by HIPIMS and DC magnetron sputtering , 2013 .

[47]  F. Lévy,et al.  Structure, morphology and electrical properties of sputtered Zr–Si–N thin films: From solid solution to nanocomposite , 2006 .

[48]  W. Sproul,et al.  CrN/AlN superlattice coatings synthesized by pulsed closed field unbalanced magnetron sputtering with different CrN layer thicknesses , 2009 .

[49]  S. Vepřek The search for novel, superhard materials , 1999 .

[50]  C. Mitterer,et al.  Nanocomposite Ti–B–N coatings synthesized by reactive arc evaporation , 2006 .

[51]  S. Tolbert,et al.  Anisotropic mechanical properties of ultra-incompressible, hard osmium diboride , 2008 .

[52]  J. Weertman Retaining the Nano in Nanocrystalline Alloys , 2012, Science.

[53]  Wolfgang Kollenberg,et al.  Plastic deformation of Al2O3 single crystals by indentation at temperatures up to 750° C , 1988 .

[54]  T. M. Gür,et al.  Properties of (Ti1−xAlx)N coatings for cutting tools prepared by the cathodic arc ion plating method , 1992 .

[55]  S. Vepřek,et al.  Avoiding the high-temperature decomposition and softening of (Al1−xTix)N coatings by the formation of stable superhard nc-(Al1−xTix)N/a-Si3N4 nanocomposite , 2004 .

[56]  H. Oettel,et al.  Tempering behaviour of TiB2 coatings , 1998 .

[57]  O. Jimenez,et al.  The morphology and structure of PVD ZrN–Cu thin films , 2009 .

[58]  W. Petuskey,et al.  Phase chemistry in the Ti-Si-N system: Thermochemical review with phase stability diagrams , 1994 .

[59]  Kenji Yamamoto,et al.  Hierarchical adaptive nanostructured PVD coatings for extreme tribological applications: the quest for nonequilibrium states and emergent behavior , 2012, Science and technology of advanced materials.

[60]  M. Zawrah,et al.  Thermal stability of nc-TiN/a-BN/a-TiB2 nanocomposite coatings deposited by plasma chemical vapor deposition , 2004 .

[61]  Hongrui Peng,et al.  Ti-Si-N films prepared by plasma-enhanced chemical vapor deposition , 1992 .

[62]  A. Karimi,et al.  Thermal stability of Cr 1−x Al x Si y N coatings with medium and high aluminium content prepared by arc evaporation , 2005 .

[63]  M. Gu,et al.  Coherent growth and mechanical properties of AlN/VN multilayers , 2004 .

[64]  Richard D. Jones,et al.  Modelling the Deformation Behaviour of Multilayer Coatings , 2001 .

[65]  D. Gastaldi,et al.  The mechanical properties of a nanocrystalline Al2O3/a-Al2O3 composite coating measured by nanoindentation and Brillouin spectroscopy , 2013 .

[66]  Christian Mitterer,et al.  Borides in Thin Film Technology , 1997 .

[67]  O. Zywitzki,et al.  Nanocomposite oxide and nitride hard coatings produced by pulse magnetron sputtering , 2005 .

[68]  Y. Yamada,et al.  Structure and properties of Al–Ti–Si–N coatings prepared by the cathodic arc ion plating method for high speed cutting applications , 2001 .

[69]  S. Vepřek,et al.  A concept for the design of novel superhard coatings , 1995 .

[70]  C. Muratore,et al.  Adaptive Nanocomposite Coatings with a Titanium Nitride Diffusion Barrier Mask for High-Temperature Tribological Applications , 2007 .

[71]  Marvin L. Cohen,et al.  Predicting properties and new materials , 1994 .

[72]  S. Vepřek,et al.  Development of novel coating technology by vacuum arc with rotating cathodes for industrial production of nc-(Al1−xTix)N/a-Si3N4 superhard nanocomposite coatings for dry, hard machining , 2004 .

[73]  M. Döbeli,et al.  Approaches to influence the microstructure and the properties of Al–Cr–O layers synthesized by cathodic arc evaporation , 2010 .

[74]  Siyuan Zhang,et al.  Hardness of covalent crystals. , 2003, Physical review letters.

[75]  C. Mitterer,et al.  Non-reactively sputtered TiN and TiB2 films: influence of activation energy on film growth , 1997 .

[76]  D. Dove,et al.  Ti/Ti‐N Hf/Hf‐N and W/W‐N multilayer films with high mechanical hardness , 1992 .

[77]  Ruifeng Zhang,et al.  On the spinodal nature of the phase segregation and formation of stable nanostructure in the Ti–Si–N system , 2006 .

[78]  R Riedel,et al.  What does 'harder than diamond' mean? , 2004, Nature materials.

[79]  D. Parks,et al.  Erratum to “Non-linear finite element constitutive modeling of mechanical properties of hard and superhard materials studied by indentation” [Mater. Sci. Eng. A 422 (2006) 205–217] , 2007 .

[80]  F. Vaz,et al.  Physical, structural and mechanical characterization of Ti1−xSixNy films , 1998 .

[81]  P. N. Gibson,et al.  Titanium boron nitride coatings of very high hardness , 1994 .

[82]  A. Alivisatos,et al.  Strain and deformation in ultra-hard nanocomposites nc-TiN/a-BN under hydrostatic pressure , 2006 .

[83]  R. Scattergood,et al.  High temperature stabilization of nanocrystalline grain size: Thermodynamic versus kinetic strategies , 2013 .

[84]  Liu,et al.  Stability of carbon nitride solids. , 1994, Physical review. B, Condensed matter.

[85]  Sidney Yip,et al.  Nanocrystals: The strongest size , 1998, Nature.

[86]  M. Mezouar,et al.  Ultimate metastable solubility of boron in diamond: synthesis of superhard diamondlike BC5. , 2009, Physical review letters.

[87]  H. Hencky,et al.  Über Einige Statisch Bestimmte Fälle Des Gleichgewichts In Plastischen Körpern , 1923 .

[88]  M. Mezouar,et al.  Synthesis of superhard cubic BC2N , 2001 .

[89]  J. Musil Hard and superhard nanocomposite coatings , 2000 .

[90]  William D. Nix,et al.  A method for interpreting the data from depth-sensing indentation instruments , 1986 .

[91]  Bin Wen,et al.  Ultrahard nanotwinned cubic boron nitride , 2013, Nature.

[92]  E. R. Margine,et al.  Development of orthogonal tight-binding models for Ti-C and Ti-N systems , 2011 .

[93]  A. Argon,et al.  Atomistic simulation and analysis of plasticity in amorphous silicon , 2006 .

[94]  R. Boxman,et al.  Vacuum arc deposition of Al2O3–ZrO2 coatings: arc behavior and coating characteristics , 2010 .

[95]  A. Madan,et al.  Stability of Nanometer-Thick Layers in Hard Coatings , 2003 .

[96]  H. Huber,et al.  ERDA with very heavy ion beams , 1996 .

[97]  Ping Liu,et al.  SiNx thickness dependent morphology and mechanical properties of CrAlN/SiNx nanomultilayers , 2013 .

[98]  S. H. Sheng,et al.  Stability of Ti–B–N solid solutions and the formation of nc-TiN/a-BN nanocomposites studied by combined ab initio and thermodynamic calculations , 2008 .

[99]  Ruifeng Zhang,et al.  Understanding why the thinnest SiN x interface in transition-metal nitrides is stronger than the ideal bulk crystal , 2010 .

[100]  B. Delley,et al.  Structure and properties of TiN (111 ) /SixNy /TiN (111) interfaces in superhard nanocomposites: First-principles investigations , 2006 .

[101]  M. Jílek,et al.  Present and possible future applications of superhard nanocomposite coatings , 2000 .

[102]  R. Kirchheim Reducing grain boundary, dislocation line and vacancy formation energies by solute segregation , 2007 .

[103]  Richard B. Kaner,et al.  Synthesis of Ultra-Incompressible Superhard Rhenium Diboride at Ambient Pressure , 2007, Science.

[104]  J. Duh,et al.  Effect of grain size on mechanical properties in CrAlN/SiNx multilayer coatings , 2010 .

[105]  L. Hultman,et al.  Electronic origin of structure and mechanical properties in Y and Nb alloyed Ti–Al–N thin films , 2011 .

[106]  R. F. Zhang,et al.  Origin of the hardness enhancement in superhard nc-TiN/a-Si3N4 and ultrahard nc-TiN/a-Si3N4/TiSi2 nanocomposites , 2007 .

[107]  J. Yeh,et al.  Effects of substrate bias on structure and mechanical properties of (AlCrNbSiTiV)N coatings , 2009 .

[108]  R. Souza,et al.  A critical reassessment of elastic unloading in sharp instrumented indentation experiments and the extraction of mechanical properties , 2011 .

[109]  R. M'Saoubi,et al.  Pressure and temperature effects on the decomposition of arc evaporated Ti0.6Al0.4N coatings in continuous turning , 2012 .

[110]  G. G. Mikhailov,et al.  Phase diagram of the system: ZrO2–Cr2O3 , 2001 .

[111]  S. Vepřek,et al.  Superhard nanocrystalline W2N/amorphous Si3N4 composite materials , 1996 .

[112]  Ruifeng Zhang,et al.  Metastable phases and spinodal decomposition in Ti1−xAlxN system studied by ab initio and thermodynamic modeling, a comparison with the TiN–Si3N4 system , 2007 .

[113]  Possible Artefacts in Measurement of Hardness and Elastic Modulus on Superhard Coatings and the Verification of the Correctness of the Data , 2002 .

[114]  A. Argon The Physics of Deformation and Fracture of Polymers: Linear viscoelasticity of polymers , 2013 .

[115]  Shihong Zhang,et al.  The nanostructured phase transition and thermal stability of superhard f-TiN/h-AlSiN films , 2012 .

[116]  Changfeng Chen,et al.  Structural deformation, strength, and instability of cubic BN compared to diamond : A first-principles study , 2006 .

[117]  D. Young,et al.  Osmium has the lowest experimentally determined compressibility. , 2002, Physical review letters.

[118]  J. Schneider,et al.  Ab initio calculated binodal and spinodal of cubic Ti1−xAlxN , 2006 .

[119]  D. B. Lewis,et al.  Industrial scale manufactured superlattice hard PVD coatings , 2001 .

[120]  S. H. Sheng,et al.  Phase stabilities and thermal decomposition in the Zr1−xAlxN system studied by ab initio calculation and thermodynamic modeling , 2008 .

[121]  A. Šimůnek,et al.  Anisotropy of hardness from first principles: The cases of ReB 2 and OsB 2 , 2009 .

[122]  G. Pharr,et al.  An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments , 1992 .

[123]  Y. Liu,et al.  Structure and properties of CrAlSiN Nanocomposite coatings deposited by lateral rotating cathod arc , 2011 .

[124]  G. Pharr,et al.  Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology , 2004 .

[125]  A. Flink,et al.  Metastability of fcc-related Si-N phases , 2008 .

[126]  S. Lehoczky Retardation of Dislocation Generation and Motion in Thin-Layered Metal Laminates , 1978 .

[127]  Chun-Huei Tsau,et al.  Strong amorphization of high-entropy AlBCrSiTi nitride film , 2012 .

[128]  S. Tolbert,et al.  High-pressure structural transformations in semiconductor nanocrystals. , 1995, Annual review of physical chemistry.

[129]  S. Vepřek,et al.  Plasma chemical vapor deposition and properties of hard C3N4 thin films , 1995 .

[130]  B. Delley,et al.  Role of oxygen in TiN(111)/Si{sub x}N{sub y}/TiN(111) interfaces: Implications for superhard nanocrystalline nc-TiN/a-Si{sub 3}N{sub 4} nanocomposites , 2006 .

[131]  S. Vepřek,et al.  Structural properties, internal stress and thermal stability of nc-TiN/a-Si3N4, nc-TiN/TiSix and nc-(Ti1−yAlySix)N superhard nanocomposite coatings reaching the hardness of diamond , 1999 .

[132]  S. Barnett,et al.  Model of superlattice yield stress and hardness enhancements , 1995 .

[133]  S. Ringer,et al.  Optimization of pulsed laser atom probe (PLAP) for the analysis of nanocomposite Ti-Si-N films. , 2010, Ultramicroscopy.

[134]  C. Mitterer,et al.  Self-organized nanocolumnar structure in superhard TiB2 thin films , 2005 .

[135]  H. Holleck Material selection for hard coatings , 1986 .

[136]  Hans Söderberg,et al.  Nanostructure formation during deposition of TiN SiNx nanomultilayer films by reactive dual magnetron sputtering , 2005 .

[137]  Redouane Zitoune,et al.  Influence of machining parameters and new nano-coated tool on drilling performance of CFRP/Aluminium sandwich , 2012 .

[138]  Andreas Kailer,et al.  Materials: Transformation of diamond to graphite , 1999, Nature.

[139]  Cohen,et al.  Calculation of bulk moduli of diamond and zinc-blende solids. , 1985, Physical review. B, Condensed matter.

[140]  Ping Liu,et al.  Crystallization of amorphous SiC and superhardness effect in CrAlN/SiC nanomultilayered films , 2013 .

[141]  Changfeng Chen,et al.  Superhard cubic BC2N compared to diamond. , 2004, Physical review letters.

[142]  Jirí Vackár,et al.  Hardness of covalent and ionic crystals: first-principle calculations. , 2006, Physical review letters.

[143]  C. Mitterer,et al.  Structure–property–performance relations of high-rate reactive arc-evaporated Ti–B–N nanocomposite coatings , 2006 .

[144]  David M. Teter,et al.  Computational Alchemy: The Search for New Superhard Materials , 1998 .

[145]  K. Polychronopoulou,et al.  The nanostructure, wear and corrosion performance of arc-evaporated CrBxNy nanocomposite coatings , 2009 .

[146]  J. Koehler Attempt to Design a Strong Solid , 1970 .

[147]  J. Procházka,et al.  Thermally activated relaxation processes in superhard nc-TiN/a-Si3N4 and nc-(Ti1 − xAlx)N/a-Si3N4 nanocomposites studied by means of internal friction measurements , 2005 .

[148]  C. Schuh,et al.  Grain boundary segregation and thermodynamically stable binary nanocrystalline alloys , 2009 .

[149]  R. F. Zhang,et al.  Mechanical properties and hardness of boron and boron-rich solids , 2011 .

[150]  E. Broszeit,et al.  The influence of a heat treatment on the microstructure and mechanical properties of sputtered coatings , 1997 .

[151]  A. Argon,et al.  Limits to the strength of super- and ultrahard nanocomposite coatings , 2003 .

[152]  Changfeng Chen,et al.  Strain dependent bonding in solid C3N4 : High elastic moduli but low strength , 2006 .

[153]  Y. Le Godec,et al.  Creation of Nanostuctures by Extreme Conditions: High‐Pressure Synthesis of Ultrahard Nanocrystalline Cubic Boron Nitride , 2012, Advanced materials.

[154]  J. Yeh,et al.  Mechanical and tribological properties of multi-element (AlCrTaTiZr)N coatings , 2008 .

[155]  C. Koch,et al.  Ultrastrong Mg Alloy via Nano-spaced Stacking Faults , 2013 .

[156]  Ping Liu,et al.  Microstructure and mechanical properties of TiAlN/SiO2 nanomultilayers synthesized by reactive magnetron sputtering , 2011 .

[157]  A. Gilewicz,et al.  Evaluation of phase, composition, microstructure and properties in TiC/a-C:H thin films deposited by magnetron sputtering , 2005 .

[158]  Wenjie Zhao,et al.  Investigations on the microstructure and hardening mechanism of TiN/Si3N4 nanocomposite coatings , 2007 .

[159]  J. Kohlscheen,et al.  Coating Development for Gear Cutting Tools , 2010 .

[160]  R. Kužel,et al.  Structure of TiN coatings deposited at relatively high rates and low temperatures by magnetron sputtering , 1988 .

[161]  G. Dollinger,et al.  Limits in elastic recoil detection analysis with heavy ions , 1996 .

[162]  A. Fischer-Cripps,et al.  On the measurement of hardness of super-hard coatings , 2006 .

[163]  Shihong Zhang,et al.  A superhard CrAlSiN superlattice coating deposited by multi-arc ion plating: I. Microstructure and mechanical properties , 2013 .

[164]  S. Vepřek,et al.  Novel thermodynamically stable and oxidation resistant superhard coating materials , 1996 .

[165]  Fei Xie,et al.  First Principles Study on the TiN/BN/TiN Interface , 2011 .

[166]  F. Lévy,et al.  Mechanical properties and oxidation resistance of nanocomposite TiN–SiNx physical-vapor-deposited thin films , 1999 .

[167]  P. Turchi,et al.  Comparative first-principles study of TiN/SiNx/TiN interfaces , 2012 .

[168]  H. Hug,et al.  Complex phase compositions in nanostructured coatings as evidenced by photoelectron spectroscopy: The case of Al–Si–N hard coatings , 2010 .

[169]  S. Vepřek,et al.  Superhard nanocrystalline composite materials: The TiN/Si3N4 system , 1995 .

[170]  J. Yeh,et al.  Nitride films deposited from an equimolar Al–Cr–Mo–Si–Ti alloy target by reactive direct current magnetron sputtering , 2008 .

[171]  R. F. Zhang,et al.  Shear-induced structural transformation and plasticity in ultraincompressible ReB2 limit its hardness , 2010 .

[172]  S. Veldhuis,et al.  Nanocrystalline coating design for extreme applications based on the concept of complex adaptive behavior , 2008 .

[173]  S. H. Sheng,et al.  Decomposition mechanism of Al1−xSixNy solid solution and possible mechanism of the formation of covalent nanocrystalline AlN/Si3N4 nanocomposites , 2013 .

[174]  Shihong Zhang,et al.  A superhard CrAlSiN superlattice coating deposited by a multi-arc ion plating: II. Thermal stability and oxidation resistance , 2013 .

[175]  A. Argon,et al.  Towards the understanding of mechanical properties of super- and ultrahard nanocomposites , 2002 .

[176]  B. Barišić,et al.  Model of quality management of hard coatings on ceramic cutting tools , 2009 .

[177]  B. Delley,et al.  Superhard nitride-based nanocomposites: role of interfaces and effect of impurities. , 2006, Physical review letters.

[178]  L. Hultman,et al.  Single-monolayer SiNx embedded in TiN : A first-principles study , 2010 .

[179]  K. Komvopoulos,et al.  Elastic–plastic spherical indentation: Deformation regimes, evolution of plasticity, and hardening effect , 2013 .

[180]  O. Lemmer,et al.  A new technique for testing the impact load of thin films: the coating impact test , 1992 .

[181]  L. Hultman,et al.  Growth, structure, and microhardness of epitaxial TiN/NbN superlattices , 1992 .

[182]  H. Strunk,et al.  Microstructure of novel superhard nanocrystalline-amorphous composites as analyzed by high resolution transmission electron microscopy , 1998 .

[183]  J. Yeh,et al.  Effects of substrate temperature and post-annealing on microstructure and properties of (AlCrNbSiTiV)N coatings , 2009 .

[184]  Jianjun Hu,et al.  Tribological coatings for lubrication over multiple thermal cycles , 2009 .

[185]  D. M. Marsh,et al.  Plastic flow in glass , 1964, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[186]  B. Almeida,et al.  Structural analysis of Ti1−xSixNy nanocomposite films prepared by reactive magnetron sputtering , 1999 .

[187]  J. Weissmüller Alloy effects in nanostructures , 1993 .

[188]  Lili Wang,et al.  Structures, mechanical properties and thermal stability of TiN/SiNx multilayer coatings deposited by magnetron sputtering , 2009 .

[189]  Kenji Yamamoto,et al.  INVESTIGATION OF NANO-STRUCTURED PVD COATINGS FOR DRY HIGH-SPEED MACHINING , 2007 .

[190]  J. Yeh,et al.  Multi-component nitride coatings derived from Ti–Al–Cr–Si–V target in RF magnetron sputter , 2007 .

[191]  Elias C. Aifantis,et al.  A simple, mixtures-based model for the grain size dependence of strength in nanophase metals , 1995 .

[192]  S. Vepřek,et al.  Limits to the preparation of superhard nanocomposites: Impurities, deposition and annealing temperature , 2012 .

[193]  T. Nomura,et al.  Formation of cubic-A1N in TiN/A1N superlattice , 1996 .

[194]  R. F. Zhang,et al.  Electronic structure, stability, and mechanism of the decohesion and shear of interfaces in superhard nanocomposites and heterostructures , 2009 .

[195]  S. Vepřek,et al.  Properties of superhard nc-TiN/a-BN and nc-TiN/a-BN/a-TiB2 nanocomposite coatings prepared by plasma induced chemical vapor deposition , 2006 .

[196]  Lars Hultman,et al.  Microstructural evolution during film growth , 2003 .

[197]  I. Tomov,et al.  Columnar structures in polycrystalline thin films developed by competitive growth , 1998 .

[198]  D. Habibi,et al.  Extremely hard, damage-tolerant ceramic coatings with functionally graded, periodically varying architecture , 2013 .

[199]  Kleinman,et al.  Instabilities in diamond under high shear stress , 2000, Physical review letters.

[200]  J. Yeh,et al.  Structure and properties of two Al-Cr-Nb-Si-Ti high-entropy nitride coatings , 2013 .

[201]  A. Argon,et al.  Hertzian analysis of the self-consistency and reliability of the indentation hardness measurements on superhard nanocomposite coatings , 2003 .

[202]  Ming-Hua Shiao,et al.  Effects of substrate bias on structure and mechanical properties of (TiVCrZrHf)N coatings , 2012 .

[203]  M. Demkowicz,et al.  High-density liquidlike component facilitates plastic flow in a model amorphous silicon system. , 2004, Physical review letters.

[204]  S. H. Sheng,et al.  Phase stabilities and decomposition mechanism in the Zr–Si–N system studied by combined ab initio DFT and thermodynamic calculation , 2011 .

[205]  A. A. Voevodin,et al.  Nanocomposite tribological coatings with “chameleon” surface adaptation , 2002 .

[206]  D. Ugues,et al.  Development of multilayer coatings for forming dies and tools of aluminium alloy from liquid state , 2009 .

[207]  K. Polychronopoulou,et al.  Synthesis and characterization of Cr–B–N coatings deposited by reactive arc evaporation , 2008 .

[208]  M. Döbeli,et al.  Thermal Stability of Thin Film Corundum‐Type Solid Solutions of (Al1–xCrx)2O3 Synthesized Under Low‐Temperature Non‐Equilibrium Conditions , 2007 .

[209]  Á. Barna,et al.  FORMATION OF ALUMINIUM THIN FILMS IN THE PRESENCE OF OXYGEN AND NICKEL. , 1979 .

[210]  C. Schimpf,et al.  Interface phenomena in (super)hard nitride nanocomposites: from coatings to bulk materials. , 2012, Chemical Society reviews.

[211]  D. Vollath,et al.  Nanomaterials: An Introduction to Synthesis, Properties and Applications , 2008 .

[212]  A. Voevodin,et al.  Nanocomposite and nanostructured tribological materials for space applications , 2005 .

[213]  C. Sandu,et al.  A unique approach to reveal the nanocomposite nc-MN/SiN-layer architecture of thin films via electrical measurements , 2010 .

[214]  C. Eggs,et al.  Thermal stability of ZrN–Ni and CrN–Ni superhard nanocomposite coatings , 2001 .

[215]  J. Procházka,et al.  Different approaches to superhard coatings and nanocomposites , 2005 .

[216]  A. S. Argon,et al.  1.24 – Fracture: Strength and Toughness Mechanisms , 2000 .

[217]  W. Sproul New Routes in the Preparation of Mechanically Hard Films , 1996, Science.

[218]  T. Bolom,et al.  The role of percolation threshold for the control of the hardness and thermal stability of super- and ultrahard nanocomposites , 2001 .

[219]  R. Kirchheim Grain coarsening inhibited by solute segregation , 2002 .

[220]  John S. Rowlinson,et al.  On the Continuity of the Gaseous and Liquid States , 2004 .

[221]  Xiaoxu Huang,et al.  Revealing the Maximum Strength in Nanotwinned Copper , 2009, Science.

[222]  T. Bolom,et al.  Composition, nanostructure and origin of the ultrahardness in nc-TiN/a-Si3N4/a- and nc-TiSi2 nanocomposites with HV= 80 to ≥ 105 GPa , 2000 .

[223]  R. Kirchheim Reducing grain boundary, dislocation line and vacancy formation energies by solute segregation. I. Theoretical background , 2007 .

[224]  S. Ringer,et al.  Microstructural investigation of Ti–Si–N hard coatings , 2010 .

[225]  S. Barnett,et al.  Growth of single-crystal TiN/VN strained-layer superlattices with extremely high mechanical hardness , 1987 .

[226]  Changfeng Chen,et al.  Is osmium diboride an ultra-hard material? , 2008, Journal of the American Chemical Society.

[227]  C. Schuh,et al.  Design of Stable Nanocrystalline Alloys , 2012, Science.

[228]  Yong Qing Fu,et al.  Toughening of hard nanostructural thin films: a critical review , 2005 .

[229]  S. Carvalho,et al.  In-service behaviour of (Ti,Si,Al)Nx nanocomposite films , 2012 .

[230]  L. Prandtl,et al.  Hauptaufsätze: Über die Eindringungsfestigkeit (Härte) plastischer Baustoffe und die Festigkeit von Schneiden , 1921 .

[231]  A. Flink,et al.  The location and effects of Si in (Ti_1-xSi_x)N_y thin films , 2009 .

[232]  J. Hosson,et al.  Ni-toughened nc-TiN/a-SiNx nanocomposite thin films , 2005 .

[233]  L. Hultman,et al.  Enhanced hardness in lattice‐matched single‐crystal TiN/V0.6Nb0.4N superlattices , 1990 .

[234]  Ping Liu,et al.  Structure, mechanical properties and thermal stability of CrAlN/ZrO2 nanomultilayers deposited by magnetron sputtering , 2013 .

[235]  A. S. Argon,et al.  The strongest size , 2006 .

[236]  Yusheng Zhao,et al.  Superhard diamondlike BC 5 : A first-principles investigation , 2009 .

[237]  C. Mitterer,et al.  Wear-resistant Ti–B–N nanocomposite coatings synthesized by reactive cathodic arc evaporation , 2010 .

[238]  W. Gao,et al.  First Principles Study on Shear Deformation of TIN/BN/TIN Interface , 2011 .

[239]  C. Muratore,et al.  Multilayered YSZ–Ag–Mo/TiN adaptive tribological nanocomposite coatings , 2006 .

[240]  R. W. Siegel,et al.  Mechanical properties of nanophase metals , 1994 .

[241]  J. Yeh,et al.  Mechanical performance and nanoindenting deformation of (AlCrTaTiZr)NCy multi-component coatings co-sputtered with bias , 2012 .

[242]  R. Kaner,et al.  Preparation and properties of metallic, superhard rhenium diboride crystals. , 2008, Journal of the American Chemical Society.

[243]  A. Sinani,et al.  Sapphire hardness in different crystallographic directions , 2009 .

[244]  J. Musil,et al.  Hard nanocomposite coatings: Thermal stability, oxidation resistance and toughness , 2012 .

[245]  S. H. Sheng,et al.  Study of spinodal decomposition and formation of nc-Al2O3/ZrO2 nanocomposites by combined ab initio density functional theory and thermodynamic modeling , 2011 .

[246]  H. Hug,et al.  Role of negatively charged defects in the lattice contraction of Al–Si–N , 2010 .

[247]  A. Liu,et al.  Prediction of New Low Compressibility Solids , 1989, Science.

[248]  Ruifeng Zhang,et al.  Phase stabilities of self-organized nc-TiN/a-Si3N4 nanocomposites and of Ti1 − xSixNy solid solutions studied by ab initio calculation and thermodynamic modeling , 2008 .

[249]  J. Nam,et al.  Nanoscale mutilayer TiN/BN films deposited by plasma enhanced chemical vapor deposition , 2003 .

[250]  R. Ritchie The conflicts between strength and toughness. , 2011, Nature materials.

[251]  R. M. Davies,et al.  The determination of static and dynamic yield stresses using a steel ball , 1949, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[252]  J. Schneider,et al.  Experiment and simulation of the compositional evolution of Ti–B thin films deposited by sputtering of a compound target , 2008 .

[253]  M. Larsson,et al.  Low stress TiB2 coatings with improved tribological properties , 2001 .

[254]  Ruifeng Zhang,et al.  Phase stabilities and spinodal decomposition in the Cr1-xAlxN system studied by ab initio LDA and thermodynamic modeling: Comparison with the Ti1-xAlxN and TiN/Si3N4 systems , 2007 .

[255]  L. Dubrovinsky,et al.  Superhard nanocomposite of dense polymorphs of boron nitride: Noncarbon material has reached diamond hardness , 2007 .

[256]  Peter Gumbsch,et al.  Atomistic modeling of hydrocarbon systems using analytic bond-order potentials , 2007 .

[257]  Christian Mitterer,et al.  A comparative study on reactive and non-reactive unbalanced magnetron sputter deposition of TiN coatings , 2002 .

[258]  H. Hug,et al.  Microstructure and mechanical properties of Al–Si–N transparent hard coatings deposited by magnetron sputtering , 2007 .

[259]  Sidney Yip Mapping plasticity , 2004, Nature materials.