Fast ℓ1-minimization algorithms and an application in robust face recognition: A review

We provide a comprehensive review of five representative ℓ1-minimization methods, i.e., gradient projection, homotopy, iterative shrinkage-thresholding, proximal gradient, and augmented Lagrange multiplier. The repository is intended to fill in a gap in the existing literature to systematically benchmark the performance of these algorithms using a consistent experimental setting. The experiment will be focused on the application of face recognition, where a sparse representation framework has recently been developed to recover human identities from facial images that may be affected by illumination change, occlusion, and facial disguise. The paper also provides useful guidelines to practitioners working in similar fields.

[1]  R. Glowinski,et al.  Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires , 1975 .

[2]  B. Mercier,et al.  A dual algorithm for the solution of nonlinear variational problems via finite element approximation , 1976 .

[3]  Y. Nesterov A method for solving the convex programming problem with convergence rate O(1/k^2) , 1983 .

[4]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, STOC '84.

[5]  C. Kelley Iterative Methods for Linear and Nonlinear Equations , 1987 .

[6]  J. Borwein,et al.  Two-Point Step Size Gradient Methods , 1988 .

[7]  R. C. Monteiro,et al.  Interior path following primal-dual algorithms , 1988 .

[8]  N. Megiddo Pathways to the optimal set in linear programming , 1989 .

[9]  Renato D. C. Monteiro,et al.  Interior path following primal-dual algorithms. part I: Linear programming , 1989, Math. Program..

[10]  C. Roos,et al.  On the classical logarithmic barrier function method for a class of smooth convex programming problems , 1992 .

[11]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[12]  Shinji Mizuno,et al.  Theoretical convergence of large-step primal—dual interior point algorithms for linear programming , 1993, Math. Program..

[13]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[14]  David L. Donoho,et al.  De-noising by soft-thresholding , 1995, IEEE Trans. Inf. Theory.

[15]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[16]  S. Mallat,et al.  Adaptive greedy approximations , 1997 .

[17]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[18]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[19]  M. R. Osborne,et al.  A new approach to variable selection in least squares problems , 2000 .

[20]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[21]  I. Daubechies,et al.  An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.

[22]  Ronen Basri,et al.  Lambertian Reflectance and Linear Subspaces , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  R. Tibshirani,et al.  Least angle regression , 2004, math/0406456.

[24]  Patrick L. Combettes,et al.  Signal Recovery by Proximal Forward-Backward Splitting , 2005, Multiscale Model. Simul..

[25]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[26]  J. Tropp,et al.  SIGNAL RECOVERY FROM PARTIAL INFORMATION VIA ORTHOGONAL MATCHING PURSUIT , 2005 .

[27]  Luca Zanni,et al.  Gradient projection methods for quadratic programs and applications in training support vector machines , 2005, Optim. Methods Softw..

[28]  Richard G. Baraniuk,et al.  Distributed Compressed Sensing Dror , 2005 .

[29]  Dmitry M. Malioutov,et al.  Homotopy continuation for sparse signal representation , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[30]  D. Donoho For most large underdetermined systems of equations, the minimal 𝓁1‐norm near‐solution approximates the sparsest near‐solution , 2006 .

[31]  E.J. Candes Compressive Sampling , 2022 .

[32]  Mark D. Plumbley Recovery of Sparse Representations by Polytope Faces Pursuit , 2006, ICA.

[33]  Wotao Yin,et al.  TR 0707 A Fixed-Point Continuation Method for ` 1-Regularized Minimization with Applications to Compressed Sensing , 2007 .

[34]  Y. Nesterov Gradient methods for minimizing composite objective function , 2007 .

[35]  Mário A. T. Figueiredo,et al.  Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems , 2007, IEEE Journal of Selected Topics in Signal Processing.

[36]  Stephen P. Boyd,et al.  An Interior-Point Method for Large-Scale $\ell_1$-Regularized Least Squares , 2007, IEEE Journal of Selected Topics in Signal Processing.

[37]  M. Salman Asif Primal dual pursuit: a homotopy based algorithm for the Dantzig selector , 2008 .

[38]  Yaakov Tsaig,et al.  Fast Solution of $\ell _{1}$ -Norm Minimization Problems When the Solution May Be Sparse , 2008, IEEE Transactions on Information Theory.

[39]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[40]  Michael Elad,et al.  From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images , 2009, SIAM Rev..

[41]  Stephen J. Wright,et al.  Sparse Reconstruction by Separable Approximation , 2008, IEEE Transactions on Signal Processing.

[42]  John Wright,et al.  Dense Error Correction via L1-Minimization , 2008, 0809.0199.

[43]  John Wright,et al.  Dense Error Correction Via $\ell^1$-Minimization , 2010, IEEE Transactions on Information Theory.

[44]  Allen Y. Yang,et al.  Robust Face Recognition via Sparse Representation , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[45]  Junfeng Yang,et al.  Alternating Direction Algorithms for 1-Problems in Compressive Sensing , 2009, SIAM J. Sci. Comput..

[46]  Emmanuel J. Candès,et al.  NESTA: A Fast and Accurate First-Order Method for Sparse Recovery , 2009, SIAM J. Imaging Sci..