Esculentin-1a(1-21)NH2: a frog skin-derived peptide for microbial keratitis

[1]  Kamran Ghaedi,et al.  Defensins: Antimicrobial Peptides of Innate Immunity , 2014 .

[2]  Amit Kumar,et al.  Immobilization of antimicrobial peptide IG-25 onto fluoropolymers via fluorous interactions and click chemistry. , 2013, ACS applied materials & interfaces.

[3]  A. McDermott Antimicrobial compounds in tears. , 2013, Experimental eye research.

[4]  Robert E W Hancock,et al.  Peptide design for antimicrobial and immunomodulatory applications. , 2013, Biopolymers.

[5]  David J. Evans,et al.  Why does the healthy cornea resist Pseudomonas aeruginosa infection? , 2013, American journal of ophthalmology.

[6]  A. Pini,et al.  Esculentin(1-21), an amphibian skin membrane-active peptide with potent activity on both planktonic and biofilm cells of the bacterial pathogen Pseudomonas aeruginosa , 2013, Cellular and Molecular Life Sciences.

[7]  M. Willcox,et al.  Broad spectrum antimicrobial activity of melimine covalently bound to contact lenses. , 2013, Investigative ophthalmology & visual science.

[8]  David J. Evans,et al.  Microbial Keratitis: Could Contact Lens Material Affect Disease Pathogenesis? , 2013, Eye & contact lens.

[9]  D. Robertson,et al.  The Effects of Silicone Hydrogel Lens Wear on the Corneal Epithelium and Risk for Microbial Keratitis , 2013, Eye & contact lens.

[10]  A. Patel,et al.  Colored Cosmetic Contact Lenses: An Unsafe Trend in the Younger Generation , 2012, Cornea.

[11]  G. Schneider,et al.  Designing antimicrobial peptides: form follows function , 2011, Nature Reviews Drug Discovery.

[12]  Maria Luisa Mangoni,et al.  Short native antimicrobial peptides and engineered ultrashort lipopeptides: similarities and differences in cell specificities and modes of action , 2011, Cellular and Molecular Life Sciences.

[13]  S. Molin,et al.  The clinical impact of bacterial biofilms , 2011, International Journal of Oral Science.

[14]  M. Willcox Review of resistance of ocular isolates of Pseudomonas aeruginosa and staphylococci from keratitis to ciprofloxacin, gentamicin and cephalosporins , 2011, Clinical & experimental optometry.

[15]  C. Cai,et al.  Localization of antimicrobial peptides on polymerized liposomes leading to their enhanced efficacy against Pseudomonas aeruginosa. , 2011, Molecular bioSystems.

[16]  Egon A. Ozer,et al.  The Accessory Genome of Pseudomonas aeruginosa , 2010, Microbiology and Molecular Biology Reviews.

[17]  C. Dempsey,et al.  Amphipathic antimicrobial peptides--from biophysics to therapeutics? , 2010, Protein and peptide letters.

[18]  Eduardo Guaní-Guerra,et al.  Antimicrobial peptides: general overview and clinical implications in human health and disease. , 2010, Clinical immunology.

[19]  D. Barra,et al.  Esculentin 1–21: a linear antimicrobial peptide from frog skin with inhibitory effect on bovine mastitis‐causing bacteria , 2009, Journal of peptide science : an official publication of the European Peptide Society.

[20]  Pranab K Mukherjee,et al.  Increased Resistance of Contact Lens-Related Bacterial Biofilms to Antimicrobial Activity of Soft Contact Lens Care Solutions , 2009, Cornea.

[21]  R. Nestorini,et al.  Role of old antibiotics in multidrug resistant bacterial infections. , 2009, Current drug targets.

[22]  P. Sankaridurg,et al.  In vivo performance of melimine as an antimicrobial coating for contact lenses in models of CLARE and CLPU. , 2009, Investigative ophthalmology & visual science.

[23]  A. Al-Mujaini,et al.  Bacterial keratitis: perspective on epidemiology, clinico-pathogenesis, diagnosis and treatment. , 2009, Sultan Qaboos University medical journal.

[24]  J. Conlon,et al.  Dermal Cytolytic Peptides and the System of Innate Immunity in Anurans , 2009, Annals of the New York Academy of Sciences.

[25]  R. Gallo,et al.  AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense. , 2009, Trends in immunology.

[26]  N. Kumar,et al.  A novel cationic‐peptide coating for the prevention of microbial colonization on contact lenses , 2008, Journal of applied microbiology.

[27]  A. Pinna,et al.  Detection of Virulence Factors in Pseudomonas aeruginosa Strains Isolated From Contact Lens-Associated Corneal Ulcers , 2008, Cornea.

[28]  F. Stapleton,et al.  Risk Factors and Causative Organisms in Microbial Keratitis , 2008, Cornea.

[29]  Ling C. Huang,et al.  In Vitro Activity of Human β-Defensin 2 against Pseudomonas aeruginosa in the Presence of Tear Fluid , 2007, Antimicrobial Agents and Chemotherapy.

[30]  Pitchairaj Geraldine,et al.  Infectious keratitis , 2007, Current opinion in infectious diseases.

[31]  R. Gallo,et al.  Antimicrobial peptides: natural effectors of the innate immune system , 2007, Seminars in Immunopathology.

[32]  Ling C. Huang,et al.  Ocular Surface Expression and In Vitro Activity of Antimicrobial Peptides , 2007, Current eye research.

[33]  R. Hancock,et al.  Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies , 2006, Nature Biotechnology.

[34]  C. Murphy,et al.  The in vitro activity of selected defensins against an isolate of Pseudomonas in the presence of human tears , 2006, British Journal of Ophthalmology.

[35]  M. Mangoni Temporins, anti-infective peptides with expanding properties , 2006, Cellular and Molecular Life Sciences CMLS.

[36]  R. Hancock,et al.  Cationic host defense (antimicrobial) peptides. , 2006, Current opinion in immunology.

[37]  J. Katz,et al.  The incidence of microbial keratitis among wearers of a 30-day silicone hydrogel extended-wear contact lens. , 2005, Ophthalmology.

[38]  Li Li,et al.  Characterization of growth and differentiation in a telomerase-immortalized human corneal epithelial cell line. , 2005, Investigative ophthalmology & visual science.

[39]  A. Husband,et al.  Interleukin-4 is not Critical to Pathogenesis in a Mouse Model of Pseudomonas aeruginosa Corneal Infection , 2005, Current eye research.

[40]  P. F. Nielsen,et al.  A family of brevinin-2 peptides with potent activity against Pseudomonas aeruginosa from the skin of the Hokkaido frog, Rana pirica , 2004, Regulatory Peptides.

[41]  P. Stewart,et al.  A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance , 2003, Nature.

[42]  E. K. Mela,et al.  Ulcerative Keratitis in Contact Lens Wearers , 2003, Eye & contact lens.

[43]  Ling C. Huang,et al.  Defensin expression by the cornea: multiple signalling pathways mediate IL-1beta stimulation of hBD-2 expression by human corneal epithelial cells. , 2003, Investigative ophthalmology & visual science.

[44]  D. Barra,et al.  The synthesis of antimicrobial peptides in the skin of Rana esculenta is stimulated by microorganisms , 2001, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[45]  R. Redfern,et al.  Human ß-defensin 2 is up-regulated during re-epithelialization of the cornea , 2001 .

[46]  J. A. Hobden,et al.  A Pseudomonas aeruginosa strain isolated from a Contact Lens-Induced Acute Red Eye (CLARE) is protease-deficient , 2000, Current eye research.

[47]  Savitri Sharma,et al.  Ciprofloxacin-resistant Pseudomonas keratitis. , 1999, Ophthalmology.

[48]  J. Costerton,et al.  Bacterial biofilms: a common cause of persistent infections. , 1999, Science.

[49]  V. Bafna,et al.  Human beta-defensin 2 is a salt-sensitive peptide antibiotic expressed in human lung. , 1998, The Journal of clinical investigation.

[50]  James M. Wilson,et al.  Human β-Defensin-1 Is a Salt-Sensitive Antibiotic in Lung That Is Inactivated in Cystic Fibrosis , 1997, Cell.

[51]  I. Schwab,et al.  The use of synthetic Cecropin (D5C) in disinfecting contact lens solutions. , 1996, The CLAO journal : official publication of the Contact Lens Association of Ophthalmologists, Inc.

[52]  J. A. Hobden,et al.  Pseudomonas keratitis. The role of an uncharacterized exoprotein, protease IV, in corneal virulence. , 1996, Investigative ophthalmology & visual science.

[53]  P M Southern,et al.  Susceptibility of Corneal and Conjunctival Pathogens to Ciprofloxacin , 1996, Cornea.

[54]  J. A. Hobden,et al.  Aged mice fail to upregulate ICAM-1 after Pseudomonas aeruginosa corneal infection. , 1995, Investigative ophthalmology & visual science.

[55]  F. Bossa,et al.  Antimicrobial peptides from skin secretions of Rana esculenta. Molecular cloning of cDNAs encoding esculentin and brevinins and isolation of new active peptides. , 1994, The Journal of biological chemistry.

[56]  G. Chin,et al.  Resistance to antibiotics. , 1994, Science.

[57]  D. Frank,et al.  Effect of Pseudomonas aeruginosa elastase, alkaline protease, and exotoxin A on corneal proteinases and proteins. , 1993, Investigative ophthalmology & visual science.

[58]  Wayne L. Smith,et al.  Corneal Storage Medium Preservation with Defensins , 1992, Cornea.

[59]  Wayne L. Smith,et al.  In vitro antimicrobial activity of defensins against ocular pathogens. , 1990, Archives of ophthalmology.

[60]  L. Hazlett,et al.  Evidence for N-acetylmannosamine as an ocular receptor for P. aeruginosa adherence to scarified cornea. , 1987, Investigative ophthalmology & visual science.

[61]  K. Broadie,et al.  Rolling Blackout Is Required for Synaptic Vesicle Exocytosis , 2006, The Journal of Neuroscience.

[62]  H. Taylor,et al.  Microbial Keratitis: Predisposing Factors and Morbidity , 2006 .

[63]  P Stoodley,et al.  Survival strategies of infectious biofilms. , 2005, Trends in microbiology.

[64]  Robert E W Hancock,et al.  Role of membranes in the activities of antimicrobial cationic peptides. , 2002, FEMS microbiology letters.

[65]  Mark J Mannis,et al.  The use of antimicrobial peptides in ophthalmology: an experimental study in corneal preservation and the management of bacterial keratitis. , 2002, Transactions of the American Ophthalmological Society.

[66]  Y. Shai,et al.  Mode of action of membrane active antimicrobial peptides. , 2002, Biopolymers.

[67]  S. Levy,et al.  The 2000 Garrod lecture. Factors impacting on the problem of antibiotic resistance. , 2002, The Journal of antimicrobial chemotherapy.

[68]  R. Redfern,et al.  Human beta-defensin 2 is up-regulated during re-epithelialization of the cornea. , 2001, Current eye research.

[69]  D. Andreu,et al.  Effect of hybrid peptides of cecropin A and melittin in an experimental model of bacterial keratitis. , 1997, Cornea.

[70]  R. E. Smith,et al.  Contact lens-associated microbial keratitis. , 1986, Archives of ophthalmology.

[71]  J. Marks,et al.  [Ulcers]. , 1986, Phlebologie.

[72]  Ormerod Ld,et al.  Contact lens-associated microbial keratitis. , 1986 .