Visual Input to the Drosophila Central Complex by Developmentally and Functionally Distinct Neuronal Populations

The Drosophila central brain consists of stereotyped neural lineages, developmental-structural units of macrocircuitry formed by the sibling neurons of single progenitors called neuroblasts. We demonstrate that the lineage principle guides the connectivity and function of neurons, providing input to the central complex, a collection of neuropil compartments important for visually guided behaviors. One of these compartments is the ellipsoid body (EB), a structure formed largely by the axons of ring (R) neurons, all of which are generated by a single lineage, DALv2. Two further lineages, DALcl1 and DALcl2, produce neurons that connect the anterior optic tubercle, a central brain visual center, with R neurons. Finally, DALcl1/2 receive input from visual projection neurons of the optic lobe medulla, completing a three-legged circuit that we call the anterior visual pathway (AVP). The AVP bears a fundamental resemblance to the sky-compass pathway, a visual navigation circuit described in other insects. Neuroanatomical analysis and two-photon calcium imaging demonstrate that DALcl1 and DALcl2 form two parallel channels, establishing connections with R neurons located in the peripheral and central domains of the EB, respectively. Although neurons of both lineages preferentially respond to bright objects, DALcl1 neurons have small ipsilateral, retinotopically ordered receptive fields, whereas DALcl2 neurons share a large excitatory receptive field in the contralateral hemifield. DALcl2 neurons become inhibited when the object enters the ipsilateral hemifield and display an additional excitation after the object leaves the field of view. Thus, the spatial position of a bright feature, such as a celestial body, may be encoded within this pathway.

[1]  Franz Huber,et al.  Untersuchungen über die Funktion des Zentralnervensystems und insbesondere des Gehirnes bei der Fortbewegung und der Lauterzeugung der Grillen , 2004, Zeitschrift für vergleichende Physiologie.

[2]  Michael H. Dickinson,et al.  A Simple Vision-Based Algorithm for Decision Making in Flying Drosophila , 2008, Current Biology.

[3]  Johannes D. Seelig,et al.  Neural dynamics for landmark orientation and angular path integration , 2015, Nature.

[4]  Kei Ito,et al.  Clonal analysis of Drosophila antennal lobe neurons: diverse neuronal architectures in the lateral neuroblast lineage , 2008, Development.

[5]  Stanley Heinze,et al.  Central neural coding of sky polarization in insects , 2011, Philosophical Transactions of the Royal Society B: Biological Sciences.

[6]  U. Homberg,et al.  Coding of Azimuthal Directions via Time-Compensated Combination of Celestial Compass Cues , 2007, Current Biology.

[7]  Stanley Heinze,et al.  Transformation of Polarized Light Information in the Central Complex of the Locust , 2009, The Journal of Neuroscience.

[8]  G. Rubin,et al.  A directional tuning map of Drosophila elementary motion detectors , 2013, Nature.

[9]  D. Otto Untersuchungen zur zentralnervösen Kontrolle der Lauterzeugung von Grillen , 1971, Zeitschrift für vergleichende Physiologie.

[10]  Uwe Homberg,et al.  Microglomerular Synaptic Complexes in the Sky-Compass Network of the Honeybee Connect Parallel Pathways from the Anterior Optic Tubercle to the Central Complex , 2016, Front. Behav. Neurosci..

[11]  G. Rubin,et al.  Neuroarchitecture and neuroanatomy of the Drosophila central complex: A GAL4-based dissection of protocerebral bridge neurons and circuits , 2014, The Journal of comparative neurology.

[12]  M Heisenberg,et al.  THE CENTRAL COMPLEX OF DROSOPHILA MELANOGASTER IS INVOLVED IN FLIGHT CONTROL: STUDIES ON MUTANTS AND MOSAICS OF THE GENE ELLIPSOID BODY OPEN , 1994, Journal of neurogenetics.

[13]  R. Strauss,et al.  Analysis of a spatial orientation memory in Drosophila , 2008, Nature.

[14]  Volker Hartenstein,et al.  Postembryonic lineages of the Drosophila brain: II. Identification of lineage projection patterns based on MARCM clones. , 2013, Developmental biology.

[15]  Eric J. Warrant,et al.  Neural coding underlying the cue preference for celestial orientation , 2015, Proceedings of the National Academy of Sciences.

[16]  Aljoscha Nern,et al.  Optimized tools for multicolor stochastic labeling reveal diverse stereotyped cell arrangements in the fly visual system , 2015, Proceedings of the National Academy of Sciences.

[17]  Julie H. Simpson,et al.  A GAL4-driver line resource for Drosophila neurobiology. , 2012, Cell reports.

[18]  V. Hartenstein,et al.  Neuroblast lineage-specific origin of the neurons of the Drosophila larval olfactory system. , 2013, Developmental biology.

[19]  Kei Ito,et al.  Systematic Analysis of Neural Projections Reveals Clonal Composition of the Drosophila Brain , 2013, Current Biology.

[20]  Stanley Heinze,et al.  Anatomical basis of sun compass navigation I: The general layout of the monarch butterfly brain , 2012, The Journal of comparative neurology.

[21]  Julie H. Simpson,et al.  A Systematic Nomenclature for the Insect Brain , 2014, Neuron.

[22]  Hanchuan Peng,et al.  Clonal Development and Organization of the Adult Drosophila Central Brain , 2013, Current Biology.

[23]  Stanley Heinze,et al.  Anatomical basis of sun compass navigation II: The neuronal composition of the central complex of the monarch butterfly , 2013, The Journal of comparative neurology.

[24]  Uwe Homberg,et al.  A novel type of microglomerular synaptic complex in the polarization vision pathway of the locust brain , 2008, The Journal of comparative neurology.

[25]  Liqun Luo,et al.  Target neuron prespecification in the olfactory map of Drosophila , 2001, Nature.

[26]  Thomas Labhart,et al.  Anatomical Reconstruction and Functional Imaging Reveal an Ordered Array of Skylight Polarization Detectors in Drosophila , 2016, The Journal of Neuroscience.

[27]  Jaison J. Omoto,et al.  Postembryonic lineages of the Drosophila brain: I. Development of the lineage-associated fiber tracts. , 2013, Developmental biology.

[28]  L. Luo,et al.  Representation of the Glomerular Olfactory Map in the Drosophila Brain , 2002, Cell.

[29]  K. Pfeiffer,et al.  Segregation of visual inputs from different regions of the compound eye in two parallel pathways through the anterior optic tubercle of the bumblebee (Bombus ignitus) , 2012, The Journal of comparative neurology.

[30]  V. Hartenstein,et al.  The development of the Drosophila larval brain. , 2008, Advances in experimental medicine and biology.

[31]  M. Heisenberg,et al.  Neuronal architecture of the central complex in Drosophila melanogaster , 2004, Cell and Tissue Research.

[32]  N. Strausfeld Atlas of an Insect Brain , 1976, Springer Berlin Heidelberg.

[33]  R. Strauss,et al.  A higher control center of locomotor behavior in the Drosophila brain , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[34]  Gregory S.X.E. Jefferis,et al.  Automatic Segmentation of Drosophila Neural Compartments Using GAL4 Expression Data Reveals Novel Visual Pathways , 2015, Current Biology.

[35]  Uwe Homberg,et al.  Polarization-sensitive and light-sensitive neurons in two parallel pathways passing through the anterior optic tubercle in the locust brain. , 2005, Journal of neurophysiology.

[36]  Francesca Sargolini,et al.  Is there a pilot in the brain? Contribution of the self-positioning system to spatial navigation , 2015, Front. Behav. Neurosci..

[37]  Michael B. Reiser,et al.  Visual Place Learning in Drosophila melanogaster , 2011, Nature.

[38]  U. Homberg,et al.  A Distinct Layer of the Medulla Integrates Sky Compass Signals in the Brain of an Insect , 2011, PloS one.

[39]  K. Pfeiffer,et al.  Transmedulla Neurons in the Sky Compass Network of the Honeybee (Apis mellifera) Are a Possible Site of Circadian Input , 2015, PloS one.

[40]  J. Armstrong,et al.  Genetic analysis of the Drosophila ellipsoid body neuropil: organization and development of the central complex. , 1999, Journal of neurobiology.

[41]  Uwe Homberg,et al.  Organization and neural connections of the anterior optic tubercle in the brain of the locust, Schistocerca gregaria , 2003, The Journal of comparative neurology.

[42]  Johannes D. Seelig,et al.  Feature detection and orientation tuning in the Drosophila central complex , 2013, Nature.

[43]  Thomas Labhart,et al.  Genetic Dissection Reveals Two Separate Retinal Substrates for Polarization Vision in Drosophila , 2012, Current Biology.

[44]  Peter T Weir,et al.  Functional divisions for visual processing in the central brain of flying Drosophila , 2015, Proceedings of the National Academy of Sciences.

[45]  Volker Hartenstein,et al.  Development‐based compartmentalization of the Drosophila central brain , 2010, The Journal of comparative neurology.

[46]  Stanley Heinze,et al.  Sun Compass Integration of Skylight Cues in Migratory Monarch Butterflies , 2011, Neuron.

[47]  Yisheng He,et al.  Diverse neuronal lineages make stereotyped contributions to the Drosophila locomotor control center, the central complex , 2013, The Journal of comparative neurology.

[48]  R. Kanzaki,et al.  Comparative Neuroanatomy of the Lateral Accessory Lobe in the Insect Brain , 2016, Front. Physiol..

[49]  K. Fischbach,et al.  The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure , 1989, Cell and Tissue Research.

[50]  Mehmet F. Keleş,et al.  Object-Detecting Neurons in Drosophila , 2017, Current Biology.

[51]  Michael B. Reiser,et al.  Visual projection neurons in the Drosophila lobula link feature detection to distinct behavioral programs , 2016, eLife.

[52]  M. Dickinson,et al.  Flying Drosophila Orient to Sky Polarization , 2012, Current Biology.

[53]  Basil el Jundi,et al.  Integration of polarization and chromatic cues in the insect sky compass , 2014, Journal of Comparative Physiology A.

[54]  Kei Ito,et al.  Parallel neural pathways in higher visual centers of the Drosophila brain that mediate wavelength-specific behavior , 2014, Front. Neural Circuits.