Cortical responses to object-motion and visually-induced self-motion perception.

We investigated the spatiotemporal cortical dynamics during the perception of object-motion and visually-induced self-motion perception in six normal subjects, using a 143-channel neuromagnetometer. Object-motion specific tasks evoked early transient activity over the right temporooccipital cortex, while self-motion perception, or vection, additionally was followed by sustained bilateral activity in the temporoparietal area. The specific signal distributions suggest to represent the different perceptual modes of object-motion and self-motion sensation.

[1]  G A Orban,et al.  Human cerebral activity evoked by motion reversal and motion onset. A PET study. , 1998, Brain : a journal of neurology.

[2]  M. Nitzan,et al.  Short and middle latency vestibular evoked responses to acceleration in man. , 1991, Electroencephalography and clinical neurophysiology.

[3]  C. N. Guy,et al.  The parallel visual motion inputs into areas V1 and V5 of human cerebral cortex. , 1995, Brain : a journal of neurology.

[4]  V. Virsu,et al.  Activation of Human V5 Complex and Rolandic Regions in Association with Moving Visual Stimuli , 1997, NeuroImage.

[5]  J. Dichgans,et al.  Visual-Vestibular Interaction: Effects on Self-Motion Perception and Postural Control , 1978 .

[6]  G. Orban,et al.  Many areas in the human brain respond to visual motion. , 1994, Journal of neurophysiology.

[7]  A Straube,et al.  Importance of the visual and vestibular cortex for self-motion perception in man (circularvection). , 1987, Human neurobiology.

[8]  Richard S. J. Frackowiak,et al.  Area V5 of the human brain: evidence from a combined study using positron emission tomography and magnetic resonance imaging. , 1993, Cerebral cortex.

[9]  K. Kawano,et al.  Response properties of neurons in posterior parietal cortex of monkey during visual-vestibular stimulation. I. Visual tracking neurons. , 1984, Journal of neurophysiology.

[10]  M. Sanders Handbook of Sensory Physiology , 1975 .

[11]  O. Grüsser,et al.  Vestibular neurones in the parieto‐insular cortex of monkeys (Macaca fascicularis): visual and neck receptor responses. , 1990, The Journal of physiology.

[12]  U Büttner,et al.  CIRCULARVECTION: PSYCHOPHYSICS AND SINGLE‐UNIT RECORDINGS IN THE MONKEY * , 1981, Annals of the New York Academy of Sciences.

[13]  T Elbert,et al.  The cortical representation of object motion in man is inter‐individually variable , 1996, Neuroreport.

[14]  K Cheng,et al.  Human cortical regions activated by wide-field visual motion: an H2(15)O PET study. , 1995, Journal of neurophysiology.

[15]  M. Wiesmann,et al.  Cerebral functional magnetic resonance imaging of vestibular, auditory, and nociceptive areas during galvanic stimulation , 1998, Annals of neurology.

[16]  M Dieterich,et al.  Horizontal or vertical optokinetic stimulation activates visual motion-sensitive, ocular motor and vestibular cortex areas with right hemispheric dominance. An fMRI study. , 1998, Brain : a journal of neurology.

[17]  R J Ilmoniemi,et al.  Spatiotemporal activity of a cortical network for processing visual motion revealed by MEG and fMRI. , 1999, Journal of neurophysiology.

[18]  Kenji Kawano,et al.  Vestibular input to visual tracking neurons in the posterior parietal association cortex of the monkey , 1980, Neuroscience Letters.

[19]  T. Brandt,et al.  Reciprocal inhibitory visual-vestibular interaction. Visual motion stimulation deactivates the parieto-insular vestibular cortex. , 1998, Brain : a journal of neurology.