Ricci curvature of Markov chains on metric spaces
暂无分享,去创建一个
[1] Karl-Theodor Sturm,et al. Mass transportation and rough curvature bounds for discrete spaces , 2009 .
[2] R. Oliveira. On the convergence to equilibrium of Kac’s random walk on matrices , 2007, 0705.2253.
[3] C. Villani. Optimal Transport: Old and New , 2008 .
[4] Shin-ichi Ohta. On the measure contraction property of metric measure spaces , 2007 .
[5] Y. Ollivier. Ricci curvature of metric spaces , 2007 .
[6] Ald'eric Joulin. Poisson-type deviation inequalities for curved continuous-time Markov chains , 2007 .
[7] J. Lott. Optimal Transport and Ricci Curvature for Metric- Measure Spaces , 2006, math/0610154.
[8] Karl-Theodor Sturm,et al. On the geometry of metric measure spaces. II , 2006 .
[9] Karl-Theodor Sturm,et al. On the geometry of metric measure spaces , 2006 .
[10] Karl-Theodor Sturm,et al. Transport inequalities, gradient estimates, entropy and Ricci curvature , 2005 .
[11] M. Sammer. ASPECTS OF MASS TRANSPORTATION IN DISCRETE CONCENTRATION INEQUALITIES , 2005 .
[12] Yuval Peres. Mixing for Markov Chains and Spin Systems , 2005 .
[13] C. Villani,et al. Ricci curvature for metric-measure spaces via optimal transport , 2004, math/0412127.
[14] A. Guillin,et al. Transportation cost-information inequalities and applications to random dynamical systems and diffusions , 2004, math/0410172.
[15] G. Burton. TOPICS IN OPTIMAL TRANSPORTATION (Graduate Studies in Mathematics 58) By CÉDRIC VILLANI: 370 pp., US$59.00, ISBN 0-8218-3312-X (American Mathematical Society, Providence, RI, 2003) , 2004 .
[16] Fabio Martinelli,et al. Relaxation Times of Markov Chains in Statistical Mechanics and Combinatorial Structures , 2004 .
[17] C. Villani. Topics in Optimal Transportation , 2003 .
[18] Y. Ollivier. Sharp phase transition theorems for hyperbolicity of random groups , 2003, math/0301187.
[19] M. Berger. A Panoramic View of Riemannian Geometry , 2003 .
[20] G. Schechtman. Chapter 37 - Concentration, Results and Applications , 2003 .
[21] Giuseppe Toscani,et al. ON CONVEX SOBOLEV INEQUALITIES AND THE RATE OF CONVERGENCE TO EQUILIBRIUM FOR FOKKER-PLANCK TYPE EQUATIONS , 2001 .
[22] M. Ledoux. The concentration of measure phenomenon , 2001 .
[23] J. Lindenstrauss,et al. Handbook of geometry of Banach spaces , 2001 .
[24] Arcwise Isometries,et al. A Course in Metric Geometry , 2001 .
[25] C. Villani,et al. Generalization of an Inequality by Talagrand and Links with the Logarithmic Sobolev Inequality , 2000 .
[26] S. Bobkov,et al. On Modified Logarithmic Sobolev Inequalities for Bernoulli and Poisson Measures , 1998 .
[27] Amir Dembo,et al. Large Deviations Techniques and Applications , 1998 .
[28] Mu-Fa Chen,et al. Trilogy of Couplings and General Formulas for Lower Bound of Spectral Gap , 1998 .
[29] Martin E. Dyer,et al. Path coupling: A technique for proving rapid mixing in Markov chains , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.
[30] P. Diaconis,et al. LOGARITHMIC SOBOLEV INEQUALITIES FOR FINITE MARKOV CHAINS , 1996 .
[31] K. Marton. A measure concentration inequality for contracting markov chains , 1996 .
[32] K. Marton. Bounding $\bar{d}$-distance by informational divergence: a method to prove measure concentration , 1996 .
[33] R. L. Dobrushin,et al. Perturbation methods of the theory of Gibbsian fields , 1996 .
[34] Wang Fengyu. Application of coupling method to the first eigenvalue on manifold , 1995 .
[35] Chen Mu. Application of Coupling Method to the First Eigenvalue on Manifold , 1994 .
[36] M. Artin,et al. Société Mathématique de France , 1994 .
[37] Mu-Fa Chen,et al. From Markov Chains to Non-Equilibrium Particle Systems , 1992 .
[38] É. Ghys,et al. Sur Les Groupes Hyperboliques D'Apres Mikhael Gromov , 1990 .
[39] Mu-Fa Chen,et al. Coupling Methods for Multidimensional Diffusion Processes , 1989 .
[40] G. Pisier. ASYMPTOTIC THEORY OF FINITE DIMENSIONAL NORMED SPACES (Lecture Notes in Mathematics 1200) , 1987 .
[41] V. Milman,et al. Asymptotic Theory Of Finite Dimensional Normed Spaces , 1986 .
[42] J. Azéma,et al. Séminaire de Probabilités XIX 1983/84 , 1985 .
[43] R. Dobrushin,et al. Constructive Criterion for the Uniqueness of Gibbs Field , 1985 .
[44] K. Deimling. Fixed Point Theory , 2008 .
[45] M. Émery,et al. Hypercontractivité de semi-groupes de diffusion , 1984 .
[46] M. Gromov,et al. A topological application of the isoperimetric inequality , 1983 .
[47] P. Meyer,et al. Sur les inegalites de Sobolev logarithmiques. I , 1982 .
[48] D. Vere-Jones. Markov Chains , 1972, Nature.
[49] R. Griffiths. Correlations in Ising ferromagnets. III , 1967 .
[50] Robert B. Griffiths,et al. Correlations in Ising Ferromagnets. I , 1967 .
[51] C. McDiarmid. Concentration , 1862, The Dental register.
[52] BOUNDING d - DISTANCE BY INFORMATIONAL DIVERGENCE: A METHOD TO PROVE MEASURE CONCENTRATION 1 , 2022 .