Ricci curvature of Markov chains on metric spaces

[1]  Karl-Theodor Sturm,et al.  Mass transportation and rough curvature bounds for discrete spaces , 2009 .

[2]  R. Oliveira On the convergence to equilibrium of Kac’s random walk on matrices , 2007, 0705.2253.

[3]  C. Villani Optimal Transport: Old and New , 2008 .

[4]  Shin-ichi Ohta On the measure contraction property of metric measure spaces , 2007 .

[5]  Y. Ollivier Ricci curvature of metric spaces , 2007 .

[6]  Ald'eric Joulin Poisson-type deviation inequalities for curved continuous-time Markov chains , 2007 .

[7]  J. Lott Optimal Transport and Ricci Curvature for Metric- Measure Spaces , 2006, math/0610154.

[8]  Karl-Theodor Sturm,et al.  On the geometry of metric measure spaces. II , 2006 .

[9]  Karl-Theodor Sturm,et al.  On the geometry of metric measure spaces , 2006 .

[10]  Karl-Theodor Sturm,et al.  Transport inequalities, gradient estimates, entropy and Ricci curvature , 2005 .

[11]  M. Sammer ASPECTS OF MASS TRANSPORTATION IN DISCRETE CONCENTRATION INEQUALITIES , 2005 .

[12]  Yuval Peres Mixing for Markov Chains and Spin Systems , 2005 .

[13]  C. Villani,et al.  Ricci curvature for metric-measure spaces via optimal transport , 2004, math/0412127.

[14]  A. Guillin,et al.  Transportation cost-information inequalities and applications to random dynamical systems and diffusions , 2004, math/0410172.

[15]  G. Burton TOPICS IN OPTIMAL TRANSPORTATION (Graduate Studies in Mathematics 58) By CÉDRIC VILLANI: 370 pp., US$59.00, ISBN 0-8218-3312-X (American Mathematical Society, Providence, RI, 2003) , 2004 .

[16]  Fabio Martinelli,et al.  Relaxation Times of Markov Chains in Statistical Mechanics and Combinatorial Structures , 2004 .

[17]  C. Villani Topics in Optimal Transportation , 2003 .

[18]  Y. Ollivier Sharp phase transition theorems for hyperbolicity of random groups , 2003, math/0301187.

[19]  M. Berger A Panoramic View of Riemannian Geometry , 2003 .

[20]  G. Schechtman Chapter 37 - Concentration, Results and Applications , 2003 .

[21]  Giuseppe Toscani,et al.  ON CONVEX SOBOLEV INEQUALITIES AND THE RATE OF CONVERGENCE TO EQUILIBRIUM FOR FOKKER-PLANCK TYPE EQUATIONS , 2001 .

[22]  M. Ledoux The concentration of measure phenomenon , 2001 .

[23]  J. Lindenstrauss,et al.  Handbook of geometry of Banach spaces , 2001 .

[24]  Arcwise Isometries,et al.  A Course in Metric Geometry , 2001 .

[25]  C. Villani,et al.  Generalization of an Inequality by Talagrand and Links with the Logarithmic Sobolev Inequality , 2000 .

[26]  S. Bobkov,et al.  On Modified Logarithmic Sobolev Inequalities for Bernoulli and Poisson Measures , 1998 .

[27]  Amir Dembo,et al.  Large Deviations Techniques and Applications , 1998 .

[28]  Mu-Fa Chen,et al.  Trilogy of Couplings and General Formulas for Lower Bound of Spectral Gap , 1998 .

[29]  Martin E. Dyer,et al.  Path coupling: A technique for proving rapid mixing in Markov chains , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[30]  P. Diaconis,et al.  LOGARITHMIC SOBOLEV INEQUALITIES FOR FINITE MARKOV CHAINS , 1996 .

[31]  K. Marton A measure concentration inequality for contracting markov chains , 1996 .

[32]  K. Marton Bounding $\bar{d}$-distance by informational divergence: a method to prove measure concentration , 1996 .

[33]  R. L. Dobrushin,et al.  Perturbation methods of the theory of Gibbsian fields , 1996 .

[34]  Wang Fengyu Application of coupling method to the first eigenvalue on manifold , 1995 .

[35]  Chen Mu Application of Coupling Method to the First Eigenvalue on Manifold , 1994 .

[36]  M. Artin,et al.  Société Mathématique de France , 1994 .

[37]  Mu-Fa Chen,et al.  From Markov Chains to Non-Equilibrium Particle Systems , 1992 .

[38]  É. Ghys,et al.  Sur Les Groupes Hyperboliques D'Apres Mikhael Gromov , 1990 .

[39]  Mu-Fa Chen,et al.  Coupling Methods for Multidimensional Diffusion Processes , 1989 .

[40]  G. Pisier ASYMPTOTIC THEORY OF FINITE DIMENSIONAL NORMED SPACES (Lecture Notes in Mathematics 1200) , 1987 .

[41]  V. Milman,et al.  Asymptotic Theory Of Finite Dimensional Normed Spaces , 1986 .

[42]  J. Azéma,et al.  Séminaire de Probabilités XIX 1983/84 , 1985 .

[43]  R. Dobrushin,et al.  Constructive Criterion for the Uniqueness of Gibbs Field , 1985 .

[44]  K. Deimling Fixed Point Theory , 2008 .

[45]  M. Émery,et al.  Hypercontractivité de semi-groupes de diffusion , 1984 .

[46]  M. Gromov,et al.  A topological application of the isoperimetric inequality , 1983 .

[47]  P. Meyer,et al.  Sur les inegalites de Sobolev logarithmiques. I , 1982 .

[48]  D. Vere-Jones Markov Chains , 1972, Nature.

[49]  R. Griffiths Correlations in Ising ferromagnets. III , 1967 .

[50]  Robert B. Griffiths,et al.  Correlations in Ising Ferromagnets. I , 1967 .

[51]  C. McDiarmid Concentration , 1862, The Dental register.

[52]  BOUNDING d - DISTANCE BY INFORMATIONAL DIVERGENCE: A METHOD TO PROVE MEASURE CONCENTRATION 1 , 2022 .