Synergetic Enhancement of Light Harvesting and Charge Separation over Surface-Disorder-Engineered TiO2 Photonic Crystals

[1]  H. Cui,et al.  Ag2O nanoparticle/TiO2 nanobelt heterostructures with remarkable photo-response and photocatalytic properties under UV, visible and near-infrared irradiation , 2016 .

[2]  Licheng Sun,et al.  Perovskite-based nanocubes with simultaneously improved visible-light absorption and charge separation enabling efficient photocatalytic CO2 reduction , 2016 .

[3]  Song Jin,et al.  Efficient Electrocatalytic and Photoelectrochemical Hydrogen Generation Using MoS2 and Related Compounds , 2016 .

[4]  Ang Li,et al.  Thin Heterojunctions and Spatially Separated Cocatalysts To Simultaneously Reduce Bulk and Surface Recombination in Photocatalysts. , 2016, Angewandte Chemie.

[5]  K. Domen,et al.  Visible Light-Driven Z-Scheme Water Splitting Using Oxysulfide H2 Evolution Photocatalysts. , 2016, The journal of physical chemistry letters.

[6]  H. Arandiyan,et al.  Interfacial insights into 3D plasmonic multijunction nanoarchitecture toward efficient photocatalytic performance , 2016 .

[7]  Tianquan Lin,et al.  Progress in Black Titania: A New Material for Advanced Photocatalysis , 2016 .

[8]  Yating Wang,et al.  Hydrogenated Cagelike Titania Hollow Spherical Photocatalysts for Hydrogen Evolution under Simulated Solar Light Irradiation. , 2016, ACS applied materials & interfaces.

[9]  L. Qu,et al.  Graphitic Carbon Nitride/Nitrogen-Rich Carbon Nanofibers: Highly Efficient Photocatalytic Hydrogen Evolution without Cocatalysts. , 2016, Angewandte Chemie.

[10]  Dingshan Yu,et al.  Freestanding Graphitic Carbon Nitride Photonic Crystals for Enhanced Photocatalysis , 2016 .

[11]  X. Sun,et al.  Unraveling the Origin of Visible Light Capture by Core–Shell TiO2 Nanotubes , 2016 .

[12]  Ang Li,et al.  Spatial separation of oxidation and reduction co-catalysts for efficient charge separation: Pt@TiO2@MnO x hollow spheres for photocatalytic reactions , 2015, Chemical science.

[13]  Yating Wang,et al.  In Situ Formation of Disorder-Engineered TiO2(B)-Anatase Heterophase Junction for Enhanced Photocatalytic Hydrogen Evolution. , 2015, ACS applied materials & interfaces.

[14]  M. Hartmann,et al.  "Black" TiO2 Nanotubes Formed by High-Energy Proton Implantation Show Noble-Metal-co-Catalyst Free Photocatalytic H2-Evolution. , 2015, Nano letters.

[15]  Tuo Wang,et al.  Single-Crystal Semiconductors with Narrow Band Gaps for Solar Water Splitting. , 2015, Angewandte Chemie.

[16]  Xiao Hua Yang,et al.  Multifunctional Inverse Opal‐Like TiO2 Electron Transport Layer for Efficient Hybrid Perovskite Solar Cells , 2015, Advanced science.

[17]  Jian Liu,et al.  3D ordered macroporous TiO2-supported Pt@CdS core–shell nanoparticles: design, synthesis and efficient photocatalytic conversion of CO2 with water to methane , 2015 .

[18]  Lei Liu,et al.  Black titanium dioxide (TiO2) nanomaterials. , 2015, Chemical Society reviews.

[19]  Jinlong Gong,et al.  Tungsten Oxide Single Crystal Nanosheets for Enhanced Multichannel Solar Light Harvesting , 2015, Advanced materials.

[20]  H. Arandiyan,et al.  Pt Nanoparticles Embedded in Colloidal Crystal Template Derived 3D Ordered Macroporous Ce0.6Zr0.3Y0.1O2: Highly Efficient Catalysts for Methane Combustion , 2015 .

[21]  Li Wang,et al.  Titanium-defected undoped anatase TiO2 with p-type conductivity, room-temperature ferromagnetism, and remarkable photocatalytic performance. , 2015, Journal of the American Chemical Society.

[22]  Zheng Jiang,et al.  Synergistic Effect of Titanate-Anatase Heterostructure and Hydrogenation-Induced Surface Disorder on Photocatalytic Water Splitting , 2015 .

[23]  B. Ohtani,et al.  Visible light activity of rare earth metal doped (Er3+, Yb3+ or Er3+/Yb3+) titania photocatalysts , 2015 .

[24]  Landong Li,et al.  Sub-10 nm rutile titanium dioxide nanoparticles for efficient visible-light-driven photocatalytic hydrogen production , 2015, Nature Communications.

[25]  Zhongze Gu,et al.  Spherical colloidal photonic crystals. , 2014, Accounts of chemical research.

[26]  Y. Tong,et al.  Gold nanoparticles inducing surface disorders of titanium dioxide photoanode for efficient water splitting , 2014 .

[27]  Ling Zhang,et al.  Solar Light Driven Pure Water Splitting on Quantum Sized BiVO4 without any Cocatalyst , 2014 .

[28]  Xiaoqin Yan,et al.  A facile one-step synthesis of three-dimensionally ordered macroporous N-doped TiO2 with ethanediamine as the nitrogen source , 2014 .

[29]  Chunming Xu,et al.  Multifunctional catalysts of three-dimensionally ordered macroporous oxide-supported Au@Pt core–shell nanoparticles with high catalytic activity and stability for soot oxidation , 2014 .

[30]  T. Andreu,et al.  Slightly hydrogenated TiO2 with enhanced photocatalytic performance , 2014 .

[31]  Jianshe Liu,et al.  Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. , 2014, Chemical Society reviews.

[32]  H. Fu,et al.  Ordered mesoporous black TiO(2) as highly efficient hydrogen evolution photocatalyst. , 2014, Journal of the American Chemical Society.

[33]  Chongyin Yang,et al.  Black TiO2 nanotube arrays for high-efficiency photoelectrochemical water-splitting , 2014 .

[34]  M. Meng,et al.  H2 spillover enhanced hydrogenation capability of TiO2 used for photocatalytic splitting of water: a traditional phenomenon for new applications. , 2014, Chemical communications.

[35]  B. Pan,et al.  Oxygen vacancies confined in ultrathin indium oxide porous sheets for promoted visible-light water splitting. , 2014, Journal of the American Chemical Society.

[36]  Shihe Yang,et al.  Coupling surface plasmon resonance of gold nanoparticles with slow-photon-effect of TiO2 photonic crystals for synergistically enhanced photoelectrochemical water splitting , 2014 .

[37]  Chongyin Yang,et al.  Effective nonmetal incorporation in black titania with enhanced solar energy utilization , 2014 .

[38]  Chunming Xu,et al.  Design and synthesis of 3D ordered macroporous CeO₂-supported Pt@CeO(2-δ) core-shell nanoparticle materials for enhanced catalytic activity of soot oxidation. , 2013, Small.

[39]  H. Arandiyan,et al.  Three-dimensionally ordered macroporous La0.6Sr0.4MnO3 with high surface areas: Active catalysts for the combustion of methane , 2013 .

[40]  Danzhen Li,et al.  Titanium Dioxide Photonic Crystals with Enhanced Photocatalytic Activity: Matching Photonic Band Gaps of TiO2 to the Absorption Peaks of Dyes , 2013 .

[41]  B. Scrosati,et al.  Black anatase titania enabling ultra high cycling rates for rechargeable lithium batteries , 2013 .

[42]  D. Shen,et al.  Hydrogenation and disorder in engineered black TiO2. , 2013, Physical review letters.

[43]  F. Zaera,et al.  Tailored synthesis of mesoporous TiO2 hollow nanostructures for catalytic applications , 2013 .

[44]  P. Glans,et al.  Properties of Disorder-Engineered Black Titanium Dioxide Nanoparticles through Hydrogenation , 2013, Scientific Reports.

[45]  M. Marelli,et al.  Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. , 2012, Journal of the American Chemical Society.

[46]  Z. Xiong,et al.  Nitrogen-doped titanate-anatase core-shell nanobelts with exposed {101} anatase facets and enhanced visible light photocatalytic activity. , 2012, Journal of the American Chemical Society.

[47]  M. Fernández-García,et al.  Advanced nanoarchitectures for solar photocatalytic applications. , 2012, Chemical reviews.

[48]  Yichuan Ling,et al.  Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. , 2011, Nano letters.

[49]  Jinhua Ye,et al.  Enhanced incident photon-to-electron conversion efficiency of tungsten trioxide photoanodes based on 3D-photonic crystal design. , 2011, ACS nano.

[50]  Xiaobo Chen,et al.  Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals , 2011, Science.

[51]  Jingxia Wang,et al.  Enhancement of photochemical hydrogen evolution over Pt-loaded hierarchical titania photonic crystal , 2010 .

[52]  Jinhua Ye,et al.  Forced Impregnation Approach to Fabrication of Large-Area, Three-Dimensionally Ordered Macroporous Metal Oxides , 2010 .

[53]  Annabella Selloni,et al.  Surface and subsurface oxygen vacancies in anatase TiO 2 and differences with rutile , 2009 .

[54]  S. Gialanella,et al.  Tailored Anatase/Brookite Nanocrystalline TiO2. The Optimal Particle Features for Liquid- and Gas-Phase Photocatalytic Reactions , 2007 .

[55]  Annabella Selloni,et al.  Electronic structure of defect states in hydroxylated and reduced rutile TiO2(110) surfaces. , 2006, Physical review letters.

[56]  Jie Zhan,et al.  Carbon quantum dots/hydrogenated TiO2 nanobelt heterostructures and their broad spectrum photocatalytic properties under UV, visible, and near-infrared irradiation , 2015 .

[57]  Limin Wang,et al.  Chemically exfoliated metallic MoS2 nanosheets: A promising supporting co-catalyst for enhancing the photocatalytic performance of TiO2 nanocrystals , 2014, Nano Research.

[58]  K. Suslick,et al.  Porous TiO2 microspheres with tunable properties for photocatalytic air purification. , 2013, Ultrasonics sonochemistry.