Incorporating Economic Objectives into Bayesian Priors: Portfolio Choice under Parameter Uncertainty

Abstract This paper proposes a way to allow Bayesian priors to reflect the objectives of an economic problem. That is, we impose priors on the solution to the problem rather than on the primitive parameters whose implied priors can be backed out from the Euler equation. Using monthly returns on the Fama-French 25 size and book-to-market portfolios and their 3 factors from January 1965 to December 2004, we find that investment performances under the objective-based priors can be significantly different from those under alternative priors, with differences in terms of annual certainty-equivalent returns greater than 10% in many cases. In terms of an out-of-sample loss function measure, portfolio strategies based on the objective-based priors can substantially outperform both strategies under alternative priors and some of the best strategies developed in the classical framework.

[1]  E. Fama,et al.  Common risk factors in the returns on stocks and bonds , 1993 .

[2]  Victor DeMiguel,et al.  How Inefficient is the 1/N Asset-Allocation Strategy? , 2005 .

[3]  R. McCulloch,et al.  Using Economic Theory to Build Optimal Portfolios , 2008 .

[4]  J. Berger Statistical Decision Theory and Bayesian Analysis , 1988 .

[5]  Chris Kirby,et al.  The Economic Value of Volatility Timing , 2000 .

[6]  Guofu Zhou,et al.  Data-generating process uncertainty: What difference does it make in portfolio decisions? , 2004 .

[7]  Guofu Zhou,et al.  Bayesian Portfolio Analysis , 2010 .

[8]  Guofu Zhou,et al.  Optimal estimation for economic gains: portfolio choice with parameter uncertainty , 1992 .

[9]  R. Stambaugh Analyzing Investments Whose Histories Differ in Length , 1997 .

[10]  Zhenyu Wang,et al.  A Shrinkage Approach to Model Uncertainty and Asset Allocation , 2005 .

[11]  Michael W. Brandt Portfolio Choice Problems , 2010 .

[12]  Jessica A. Wachter,et al.  Predictable Returns and Asset Allocation: Should a Skeptical Investor Time the Market? , 2005 .

[13]  Guofu Zhou,et al.  Markowitz meets Talmud: A combination of sophisticated and naive diversification strategies ☆ , 2011 .

[14]  Stephen J. Brown,et al.  Estimation risk and optimal portfolio choice , 1980 .

[15]  Robert C. Blattberg,et al.  A Comparison of the Stable and Student Distributions as Statistical Models for Stock Prices: Reply , 1974 .

[16]  A. Meucci Risk and asset allocation , 2005 .

[17]  Doron Avramov,et al.  Stock Return Predictability and Asset Pricing Models , 2003 .

[18]  Bob Litterman,et al.  Modern Investment Management: An Equilibrium Approach , 2003 .

[19]  Frank J. Fabozzi,et al.  Robust portfolios: contributions from operations research and finance , 2010, Ann. Oper. Res..

[20]  Jun Tu,et al.  Is Regime Switching in Stock Returns Important in Portfolio Decisions? , 2010, Manag. Sci..

[21]  Guofu Zhou,et al.  Temporary Components of Stock Returns: What Do the Data Tell Us? , 1996 .

[22]  Philippe Jorion Bayes-Stein Estimation for Portfolio Analysis , 1986, Journal of Financial and Quantitative Analysis.

[23]  Yihong Xia,et al.  Assessing Asset Pricing Anomalies , 2001 .

[24]  Michael W. Brandt Estimating Portfolio and Consumption Choice: A Conditional Euler Equations Approach , 1999 .

[25]  Richard C. Grinold,et al.  Active Portfolio Management: Quantitative Theory and Applications , 1995 .

[26]  Martijn Cremers,et al.  Multifactor Efficiency and Bayesian Inference , 2005 .

[27]  Vijay S. Bawa,et al.  The effect of estimation risk on optimal portfolio choice , 1976 .

[28]  Guofu Zhou,et al.  Bayesian Inference in Asset Pricing Tests , 1990 .

[29]  N. Barberis Investing for the Long Run When Returns are Predictable , 2000 .

[30]  W. Sharpe,et al.  Mean-Variance Analysis in Portfolio Choice and Capital Markets , 1987 .

[31]  E. L. Lehmann,et al.  Theory of point estimation , 1950 .

[32]  K. J. Martijn Cremers,et al.  Stock Return Predictability: A Bayesian Model Selection Perspective , 2000 .

[33]  R. McCulloch,et al.  Bayesian Inference and Portfolio Efficiency , 1993 .

[34]  Ľuboš Pástor Portfolio Selection and Asset Pricing Models , 1999 .

[35]  R. Stambaugh,et al.  Analyzing Investments Whose Histories Differ in Length , 1997 .

[36]  Stephen J. Brown,et al.  Model Selection When There Is "Minimal" Prior Information , 1984 .

[37]  Doron Avramov,et al.  Stock Return Predictability and Model Uncertainty , 2001 .

[38]  Victor DeMiguel,et al.  Optimal Versus Naive Diversification: How Inefficient is the 1/N Portfolio Strategy? , 2009 .

[39]  R. Stambaugh,et al.  On the Predictability of Stock Returns: An Asset-Allocation Perspective , 1995 .

[40]  Stephen J. Brown The portfolio choice problem: Comparison of certainty equivalence and optimal bayes portfolios , 1978 .

[41]  Pietro Veronesi,et al.  Learning in Financial Markets , 2009 .

[42]  Raman Uppal,et al.  A Generalized Approach to Portfolio Optimization: Improving Performance by Constraining Portfolio Norms , 2009, Manag. Sci..

[43]  Guofu Zhou,et al.  Out-of-Sample Equity Premium Prediction: Combination Forecasts and Links to the Real Economy , 2009 .

[44]  Robert B. Litterman,et al.  Global Portfolio Optimization , 1992 .

[45]  Arnold Zellner,et al.  Prediction and Decision Problems in Regression Models from the Bayesian Point of View , 1965 .

[46]  Jay Shanken,et al.  A BAYESIAN APPROACH TO TESTING PORTFOLIO EFFICIENCY , 1987 .

[47]  Lu Zhang,et al.  The Value Premium , 2002 .

[48]  Mark Britten-Jones,et al.  The Sampling Error in Estimates of Mean-Variance Efficient Portfolio Weights , 1999 .

[49]  Yarema Okhrin,et al.  Distributional properties of portfolio weights , 2006 .

[50]  Guofu Zhou Beyond Black–Litterman: Letting the Data Speak , 2009, The Journal of Portfolio Management.

[51]  Raymond Kan,et al.  Optimal Portfolio Choice with Parameter Uncertainty , 2007, Journal of Financial and Quantitative Analysis.