A Cardinal Function Algorithm for Computing Multivariate Quadrature Points

We present a new algorithm for numerically computing quadrature formulas for arbitrary domains which exactly integrate a given polynomial space. An effective method for constructing quadrature formulas has been to numerically solve a nonlinear set of equations for the quadrature points and their associated weights. Symmetry conditions are often used to reduce the number of equations and unknowns. Our algorithm instead relies on the construction of cardinal functions and thus requires that the number of quadrature points $N$ be equal to the dimension of a prescribed lower dimensional polynomial space. The cardinal functions allow us to treat the quadrature weights as dependent variables and remove them, as well as an equivalent number of equations, from the numerical optimization procedure. We give results for the triangle, where for all degrees $d \le 25$, we find quadrature formulas of this form which have positive weights and contain no points outside the triangle. Seven of these quadrature formulas improve on previously known results.

[1]  G. Karniadakis,et al.  Spectral/hp Element Methods for CFD , 1999 .

[2]  T. Koornwinder Two-Variable Analogues of the Classical Orthogonal Polynomials , 1975 .

[3]  Moshe Dubiner Spectral methods on triangles and other domains , 1991 .

[4]  Ronald Cools,et al.  An encyclopaedia of cubature formulas , 2003, J. Complex..

[5]  Jan S. Hesthaven,et al.  From Electrostatics to Almost Optimal Nodal Sets for Polynomial Interpolation in a Simplex , 1998 .

[6]  D. A. Dunavant High degree efficient symmetrical Gaussian quadrature rules for the triangle , 1985 .

[7]  George Em Karniadakis,et al.  A triangular spectral element method; applications to the incompressible Navier-Stokes equations , 1995 .

[8]  D. Komatitsch,et al.  Spectral-element simulations of global seismic wave propagation—I. Validation , 2002 .

[9]  S. Wandzurat,et al.  Symmetric quadrature rules on a triangle , 2003 .

[10]  Mirosław Baran Complex equilibrium measure and Bernstein type theorems for compact sets in ⁿ , 1995 .

[11]  M. Roth,et al.  Nodal configurations and voronoi tessellations for triangular spectral elements , 2005 .

[12]  Mark A. Taylor,et al.  An Algorithm for Computing Fekete Points in the Triangle , 2000, SIAM J. Numer. Anal..

[13]  Len Bos,et al.  Polynomial Interpretation of Holomorphic Functions in $\c$ and $\c^n$ , 1992 .

[14]  Gene H. Golub,et al.  Matrix computations , 1983 .

[15]  Beth A. Wingate,et al.  Several new quadrature formulas for polynomial integration in the triangle , 2005 .

[16]  Greg Kuperberg Numerical Cubature from Archimedes' Hat-box Theorem , 2006, SIAM J. Numer. Anal..

[17]  Mark A. Taylor,et al.  The Spectral Element Atmosphere Model (SEAM): High-Resolution Parallel Computation and Localized Resolution of Regional Dynamics , 2004 .

[18]  Raytcho D. Lazarov,et al.  Higher-order finite element methods , 2005, Math. Comput..

[19]  Ronald Cools,et al.  Constructing cubature formulae: the science behind the art , 1997, Acta Numerica.

[20]  Ronald Cools,et al.  A survey of numerical cubature over triangles , 1993 .

[21]  Stephen J. Thomas,et al.  The NCAR Spectral Element Climate Dynamical Core: Semi-Implicit Eulerian Formulation , 2005, J. Sci. Comput..

[22]  R. Cools,et al.  Monomial cubature rules since “Stroud”: a compilation , 1993 .

[23]  Dale B. Haidvogel,et al.  A three-dimensional spectral element model for the solution of the hydrostatic primitive equations , 2003 .

[24]  I. Doležel,et al.  Higher-Order Finite Element Methods , 2003 .

[25]  James N. Lyness,et al.  Moderate degree symmetric quadrature rules for the triangle j inst maths , 1975 .

[26]  R. Cools Monomial cubature rules since “Stroud”: a compilation—part 2 , 1999 .

[27]  Ivo Babuška,et al.  Approximate optimal points for polynomial interpolation of real functions in an interval and in a triangle , 1995 .

[28]  Francis X. Giraldo,et al.  A Scalable Spectral Element Eulerian Atmospheric Model (SEE-AM) for NWP: Dynamical Core Tests , 2004 .