TiO2/In2S3 S-scheme photocatalyst with enhanced H2O2-production activity

[1]  Jiaguo Yu,et al.  Electrospun TiO 2 ‐Based Photocatalysts , 2021 .

[2]  Jiaguo Yu,et al.  Near-Infrared-Responsive Photocatalysts. , 2021, Small methods.

[3]  Snigdha Roy Barman,et al.  Thermocatalytic hydrogen peroxide generation and environmental disinfection by Bi2Te3 nanoplates , 2021, Nature communications.

[4]  Z. Zhuang,et al.  Hierarchically porous S-scheme CdS/UiO-66 photocatalyst for efficient 4-nitroaniline reduction , 2021, Chinese Journal of Catalysis.

[5]  Jiaguo Yu,et al.  Sulfur-doped g-C3N4/TiO2 S-scheme heterojunction photocatalyst for Congo Red photodegradation , 2021, Chinese Journal of Catalysis.

[6]  Jiaguo Yu,et al.  Zn Cd1–S quantum dot with enhanced photocatalytic H2-production performance , 2021, Chinese Journal of Catalysis.

[7]  C. Liang,et al.  A novel step-scheme BiVO4/Ag3VO4 photocatalyst for enhanced photocatalytic degradation activity under visible light irradiation , 2021, Chinese Journal of Catalysis.

[8]  Yue Wang,et al.  Hydrothermal synthesis of novel 1-aminoperylene diimide/TiO2/MoS2 composite with enhanced photocatalytic activity , 2020, Scientific Reports.

[9]  Jiaguo Yu,et al.  Design of highly-active photocatalytic materials for solar fuel production , 2020 .

[10]  H. Tan,et al.  2D/2D Black Phosphorus/g-C3N4 S-Scheme Heterojunction Photocatalysts for CO2 Reduction Investigated using DFT Calculations , 2020, Acta Physico Chimica Sinica.

[11]  Jiaguo Yu,et al.  Step-scheme CdS/TiO2 nanocomposite hollow microsphere with enhanced photocatalytic CO2 reduction activity , 2020 .

[12]  Shiying Zhang,et al.  In2O3-(OH) /Bi2MoO6 S-scheme heterojunction for enhanced photocatalytic performance , 2020, Journal of Materials Science & Technology.

[13]  Jiaguo Yu,et al.  S-scheme heterojunction based on p-type ZnMn2O4 and n-type ZnO with improved photocatalytic CO2 reduction activity , 2020 .

[14]  Jiaguo Yu,et al.  Unique S-scheme heterojunctions in self-assembled TiO2/CsPbBr3 hybrids for CO2 photoreduction , 2020, Nature Communications.

[15]  Jiaguo Yu,et al.  Graphdiyne-modified TiO2 nanofibers with osteoinductive and enhanced photocatalytic antibacterial activities to prevent implant infection , 2020, Nature Communications.

[16]  N. Ikenaga,et al.  Photocatalytic H2O2 production from O2 under visible light irradiation over phosphate ion-coated Pd nanoparticles-supported BiVO4 , 2020 .

[17]  Jiaguo Yu,et al.  2D/2D/0D TiO2/C3N4/Ti3C2 MXene composite S-scheme photocatalyst with enhanced CO2 reduction activity , 2020 .

[18]  L. Zhang,et al.  S-scheme photocatalyst Bi2O3/TiO2 nanofiber with improved photocatalytic performance , 2020 .

[19]  Shaomin Liu,et al.  Magnetic ZnO@Fe3O4 composite for self-generated H2O2 toward photo-Fenton-like oxidation of nitrophenol , 2020 .

[20]  Jiajia Wang,et al.  Synthesis of Leaf‐Vein‐Like g‐C3N4 with Tunable Band Structures and Charge Transfer Properties for Selective Photocatalytic H2O2 Evolution , 2020, Advanced Functional Materials.

[21]  Mingce Long,et al.  The critical role of furfural alcohol in photocatalytic H2O2 production on TiO2 , 2020 .

[22]  Jiaguo Yu,et al.  S-Scheme Heterojunction Photocatalyst , 2020, Chem.

[23]  Shaobin Huang,et al.  Z‐scheme photocatalytic production of hydrogen peroxide over Bi4O5Br2/g-C3N4 heterostructure under visible light , 2020 .

[24]  Kwang S. Kim,et al.  Recent Advancement of p‐ and d‐Block Elements, Single Atoms, and Graphene‐Based Photoelectrochemical Electrodes for Water Splitting , 2020, Advanced Energy Materials.

[25]  Yanmin Qin,et al.  One-pot calcination synthesis of Cd0.5Zn0.5S/g-C3N4 photocatalyst with a step-scheme heterojunction structure , 2020 .

[26]  Jiaguo Yu,et al.  Designing 0D/2D S-scheme Heterojunction over Polymeric Carbon Nitride for Visible-Light Photocatalytic Inactivation of Bacteria. , 2020, Angewandte Chemie.

[27]  Jiaguo Yu,et al.  Designing 0D/2D S-scheme Heterojunction over Polymeric Carbon Nitride for Visible-Light Photocatalytic Inactivation of Bacteria. , 2020, Angewandte Chemie.

[28]  Jiaguo Yu,et al.  Enhanced photocatalytic H2-production activity of WO3/TiO2 step-scheme heterojunction by graphene modification , 2020, Chinese Journal of Catalysis.

[29]  Shengwei Liu,et al.  Bifunctional S-scheme g-C3N4/Bi/BiVO4 hybrid photocatalysts toward artificial carbon cycling , 2020, Chinese Journal of Catalysis.

[30]  Jiaguo Yu,et al.  S‐Scheme Heterojunction TiO2/CdS Nanocomposite Nanofiber as H2‐Production Photocatalyst , 2019, ChemCatChem.

[31]  Jinhua Ye,et al.  Bifunctional hydroxyl group over polymeric carbon nitride to achieve photocatalytic H2O2 production in ethanol aqueous solution with an apparent quantum yield of 52.8% at 420 nm. , 2019, Chemical communications.

[32]  Wooyul Kim,et al.  Formation of TiO2@Carbon Core/Shell Nanocomposites from Single Molecular Layer of Aromatic Compounds for Photocatalytic Hydrogen Peroxide Generation. , 2019, ACS applied materials & interfaces.

[33]  P. Guan,et al.  A direct H2O2 production based on hollow porous carbon sphere-sulfur nanocrystal composites by confinement effect as oxygen reduction electrocatalysts , 2019, Nano Research.

[34]  H. Tada Overall water splitting and hydrogen peroxide synthesis by gold nanoparticle-based plasmonic photocatalysts , 2019, Nanoscale advances.

[35]  G. He,et al.  Facile synthesis of TiO2/In2S3/CdS ternary porous heterostructure arrays with enhanced photoelectrochemical and visible-light photocatalytic properties , 2019, Journal of Materials Chemistry C.

[36]  V. Roy,et al.  Efficient Photocatalytic Hydrogen Peroxide Production over TiO2 Passivated by SnO2 , 2019, Catalysts.

[37]  Jingwei Huang,et al.  In-situ incorporation of Copper(II) porphyrin functionalized zirconium MOF and TiO2 for efficient photocatalytic CO2 reduction. , 2019, Science bulletin.

[38]  Bin Wang,et al.  Tuning Oxygen Vacancies in Ultrathin TiO2 Nanosheets to Boost Photocatalytic Nitrogen Fixation up to 700 nm , 2019, Advanced materials.

[39]  Yun Hang Hu,et al.  Highly selective photocatalytic production of H2O2 on sulfur and nitrogen co-doped graphene quantum dots tuned TiO2 , 2018, Applied Catalysis B: Environmental.

[40]  D. Bahnemann,et al.  Modeling and Optimization of the Photocatalytic Reduction of Molecular Oxygen to Hydrogen Peroxide over Titanium Dioxide , 2018, ACS Catalysis.

[41]  Huibo Wang,et al.  Photocatalytic H2O2 and H2 Generation from Living Chlorella vulgaris and Carbon Micro Particle Comodified g‐C3N4 , 2018, Advanced Energy Materials.

[42]  Hiroaki Tada,et al.  Gold-Nanoparticle-Loaded Carbonate-Modified Titanium(IV) Oxide Surface: Visible-Light-Driven Formation of Hydrogen Peroxide from Oxygen. , 2016, Angewandte Chemie.

[43]  Yasuhiro Shiraishi,et al.  Au Nanoparticles Supported on BiVO4: Effective Inorganic Photocatalysts for H2O2 Production from Water and O2 under Visible Light , 2016 .

[44]  J. Jia,et al.  Fabrication and photoelectrochemical characteristics of In2S3 nano-flower films on TiO2 nanorods arrays , 2016 .

[45]  Zijun Sun,et al.  Core–shell amorphous cobalt phosphide/cadmium sulfide semiconductor nanorods for exceptional photocatalytic hydrogen production under visible light , 2016 .

[46]  N. Wilson,et al.  Mechanism for the Direct Synthesis of H2O2 on Pd Clusters: Heterolytic Reaction Pathways at the Liquid-Solid Interface. , 2016, Journal of the American Chemical Society.

[47]  Roland Dittmeyer,et al.  A review of catalyst performance and novel reaction engineering concepts in direct synthesis of hydrogen peroxide , 2015 .

[48]  S. Luo,et al.  Hierarchical architectures of ZnS–In2S3 solid solution onto TiO2 nanofibers with high visible-light photocatalytic activity , 2015 .

[49]  R. Wu,et al.  Ultrathin-nanosheet-based 3D hierarchical porous In2S3 microspheres: chemical transformation synthesis, characterization, and enhanced photocatalytic and photoelectrochemical property , 2015 .

[50]  Wonyong Choi,et al.  Solar production of H2O2 on reduced graphene oxide–TiO2 hybrid photocatalysts consisting of earth-abundant elements only , 2014 .

[51]  Tao Chen,et al.  Photocatalytically green synthesis of H2O2 using 2-ethyl-9,10-anthraquinone as an electron condenser , 2014 .

[52]  Yasuhiro Shiraishi,et al.  Highly Selective Production of Hydrogen Peroxide on Graphitic Carbon Nitride (g-C3N4) Photocatalyst Activated by Visible Light , 2014 .

[53]  Wei Gao,et al.  Hydrogen peroxide generation and photocatalytic degradation of estrone by microstructural controlled ZnO nanorod arrays , 2012 .

[54]  Shunsuke Tanaka,et al.  Photocatalytic H2O2 Production from Ethanol/O2 System Using TiO2 Loaded with Au–Ag Bimetallic Alloy Nanoparticles , 2012 .

[55]  V. Štengl,et al.  In3+‐doped TiO2 and TiO2/In2S3 Nanocomposite for Photocatalytic and Stoichiometric Degradations , 2012, Photochemistry and photobiology.

[56]  T. Peng,et al.  Synthesis of floriated In2S3 decorated with TiO2 nanoparticles for efficient photocatalytic hydrogen production under visible light , 2011 .

[57]  Jiangtian Li,et al.  Preparation and visible-light photocatalytic activity of In2S3/TiO2 composite , 2010 .

[58]  J. Fierro,et al.  Hydrogen peroxide synthesis: an outlook beyond the anthraquinone process. , 2006, Angewandte Chemie.

[59]  Valter Maurino,et al.  Sustained production of H2O2 on irradiated TiO2- fluoride systems. , 2005, Chemical communications.

[60]  J. Chou,et al.  Study on pH at the point of zero charge of TiO2 pH ion-sensitive field effect transistor made by the sputtering method , 2005 .

[61]  Jincai Zhao,et al.  Mechanism of Photodecomposition of H2O2 on TiO2 Surfaces under Visible Light Irradiation , 2001 .

[62]  David S. Ginley,et al.  Prediction of Flatband Potentials at Semiconductor‐Electrolyte Interfaces from Atomic Electronegativities , 1978 .

[63]  S. Wageh,et al.  S-scheme Heterojunction Photocatalyst for CO2 Photoreduction , 2020, Acta Physico Chimica Sinica.

[64]  Zhiliang Jin,et al.  High Efficiency Electron Transfer Realized over NiS2/MoSe2 S-Scheme Heterojunction in Photocatalytic Hydrogen Evolution , 2020, Acta Physico Chimica Sinica.

[65]  C. Liang,et al.  Step-scheme porous g-C3N4/Zn0.2Cd0.8S-DETA composites for efficient and stable photocatalytic H2 production , 2020, Chinese Journal of Catalysis.

[66]  C. Liang,et al.  Step-scheme porous g-C 3 N 4 /Zn 0.2 Cd 0.8 S-DETA composites for efficient and stable photocatalytic H 2 production , 2019 .

[67]  Jiangtian Li,et al.  Preparation and visible-light photocatalytic activity of In 2S 3/TiO 2 composite , 2010 .

[68]  A. Reller,et al.  Photoinduced reactivity of titanium dioxide , 2004 .