Basic Modelling Principles: Deterministic Models

[1]  T. Höfer,et al.  Hormone-Induced Calcium Oscillations Depend on Cross-Coupling with Inositol 1,4,5-Trisphosphate Oscillations , 2014, Cell reports.

[2]  L. Groom,et al.  Characterization of ryanodine receptor type 1 single channel activity using "on-nucleus" patch clamp. , 2014, Cell calcium.

[3]  J. Sneyd,et al.  A computational model of lysosome–ER Ca2+ microdomains , 2014, Journal of Cell Science.

[4]  O. Petersen,et al.  Calcium signalling and secretory epithelia. , 2014, Cell calcium.

[5]  Eshel Ben-Jacob,et al.  Sparse short-distance connections enhance calcium wave propagation in a 3D model of astrocyte networks , 2014, Front. Comput. Neurosci..

[6]  J. Tsai Do calcium buffers always slow down the propagation of calcium waves? , 2012, Journal of Mathematical Biology.

[7]  A. Evans,et al.  Pan‐junctional sarcoplasmic reticulum in vascular smooth muscle: nanospace Ca2+ transport for site‐ and function‐specific Ca2+ signalling , 2013, The Journal of physiology.

[8]  Wenjun Zhang,et al.  Traveling Waves in a Simplified Model of Calcium Dynamics , 2012, SIAM J. Appl. Dyn. Syst..

[9]  Michael J Sanderson,et al.  Intercellular Ca(2+) waves: mechanisms and function. , 2012, Physiological reviews.

[10]  James Sneyd,et al.  Traveling Waves in the Buffered FitzHugh-Nagumo Model , 2011, SIAM J. Appl. Math..

[11]  Vivien Kirk,et al.  Multiple Timescales, Mixed Mode Oscillations and Canards in Models of Intracellular Calcium Dynamics , 2011, J. Nonlinear Sci..

[12]  Jianwei Shuai,et al.  Intercellular calcium waves in glial cells with bistable dynamics , 2011, Physical biology.

[13]  H. Osinga,et al.  Understanding anomalous delays in a model of intracellular calcium dynamics. , 2010, Chaos.

[14]  J. Sneyd,et al.  Spatio-temporal calcium dynamics in pacemaking units of the interstitial cells of Cajal. , 2010, Journal of theoretical biology.

[15]  I M Sokolov,et al.  Law of mass action, detailed balance, and the modeling of calcium puffs. , 2010, Physical review letters.

[16]  G. Warnecke,et al.  Calcium domains around single and clustered IP3 receptors and their modulation by buffers. , 2010, Biophysical journal.

[17]  W. Gibson,et al.  A model for Ca2+ waves in networks of glial cells incorporating both intercellular and extracellular communication pathways. , 2010, Journal of theoretical biology.

[18]  G. Warnecke,et al.  Modeling of the modulation by buffers of Ca2+ release through clusters of IP3 receptors. , 2009, Biophysical journal.

[19]  A. Tanimura,et al.  Monitoring of IP3 dynamics during Ca2+ oscillations in HSY human parotid cell line with FRET-based IP3 biosensors. , 2009, The journal of medical investigation : JMI.

[20]  Ian Parker,et al.  Modeling Ca2+ feedback on a single inositol 1,4,5-trisphosphate receptor and its modulation by Ca2+ buffers. , 2008, Biophysical journal.

[21]  Johan Hake,et al.  Stochastic Binding of Ca2+ Ions in the Dyadic Cleft; Continuous versus Random Walk Description of Diffusion , 2008, Biophysical journal.

[22]  K. Kuo,et al.  A quantitative model for linking Na+/Ca2+ exchanger to SERCA during refilling of the sarcoplasmic reticulum to sustain [Ca2+] oscillations in vascular smooth muscle. , 2006, Cell calcium.

[23]  M Falcke,et al.  Quasi-steady approximation for ion channel currents. , 2007, Biophysical journal.

[24]  W. Huisinga,et al.  Hybrid stochastic and deterministic simulations of calcium blips. , 2007, Biophysical journal.

[25]  Wen-hong Li,et al.  Cell membrane permeable esters of D-myo-inositol 1,4,5-trisphosphate. , 2007, Cell calcium.

[26]  Pranay Goel,et al.  Modelling calcium microdomains using homogenisation. , 2007, Journal of theoretical biology.

[27]  Ian Parker,et al.  A kinetic model of single and clustered IP3 receptors in the absence of Ca2+ feedback. , 2007, Biophysical journal.

[28]  James Sneyd,et al.  Are buffers boring? Uniqueness and asymptotical stability of traveling wave fronts in the buffered bistable system , 2007, Journal of mathematical biology.

[29]  V. Volpert,et al.  Calcium waves in systems with immobile buffers as a limit of waves for systems with nonzero diffusion , 2007 .

[30]  P. Bauer The local Ca concentration profile in the vicinity of a Ca channel , 2007, Cell Biochemistry and Biophysics.

[31]  Geneviève Dupont,et al.  Calcium dynamics: spatio-temporal organization from the subcellular to the organ level. , 2007, International review of cytology.

[32]  Pranay Goel,et al.  Homogenization of the Cell Cytoplasm: The Calcium Bidomain Equations , 2006, Multiscale Model. Simul..

[33]  Vivien Kirk,et al.  A bifurcation analysis of calcium buffering. , 2006, Journal of theoretical biology.

[34]  M. Stamatakis,et al.  Modeling of ATP-mediated signal transduction and wave propagation in astrocytic cellular networks. , 2006, Journal of theoretical biology.

[35]  T. Mazel,et al.  Reaction diffusion modeling of calcium dynamics with realistic ER geometry. , 2006, Biophysical journal.

[36]  James Sneyd,et al.  Dynamical Probing of the Mechanisms Underlying Calcium Oscillations , 2006, J. Nonlinear Sci..

[37]  R. Bertram,et al.  Diffusion of calcium and metabolites in pancreatic islets: killing oscillations with a pitchfork. , 2006, Biophysical journal.

[38]  Thomas Höfer,et al.  Models of IP3 and Ca2+ oscillations: frequency encoding and identification of underlying feedbacks. , 2006, Biophysical journal.

[39]  K. Tsaneva-Atanasova,et al.  A method for determining the dependence of calcium oscillations on inositol trisphosphate oscillations. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Joseph L Greenstein,et al.  Mechanisms of excitation-contraction coupling in an integrative model of the cardiac ventricular myocyte. , 2006, Biophysical journal.

[41]  W. Gibson,et al.  A quantitative model of purinergic junctional transmission of calcium waves in astrocyte networks. , 2005, Biophysical journal.

[42]  James Sneyd,et al.  Existence and Stability of Traveling Waves in Buffered Systems , 2005, SIAM J. Appl. Math..

[43]  Donald M Bers,et al.  A mathematical treatment of integrated Ca dynamics within the ventricular myocyte. , 2004, Biophysical journal.

[44]  S. Coombes,et al.  Receptors, sparks and waves in a fire-diffuse-fire framework for calcium release. , 2004, Progress in biophysics and molecular biology.

[45]  M. Falcke,et al.  Release currents of IP(3) receptor channel clusters and concentration profiles. , 2004, Biophysical journal.

[46]  Ian Parker,et al.  Spatiotemporal patterning of IP3‐mediated Ca2+ signals in Xenopus oocytes by Ca2+‐binding proteins , 2004, The Journal of physiology.

[47]  J L Thompson,et al.  Control of calcium oscillations by membrane fluxes. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[48]  Ian Parker,et al.  Buffer Kinetics Shape the Spatiotemporal Patterns of IP3‐Evoked Ca2+ Signals , 2003, The Journal of physiology.

[49]  S. Coombes,et al.  Sparks and waves in a stochastic fire-diffuse-fire model of Ca2+ release. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[50]  P. Bressloff,et al.  Saltatory waves in the spike-diffuse-spike model of active dendritic spines. , 2003, Physical review letters.

[51]  S. Swillens,et al.  Ca2+ oscillations in hepatocytes do not require the modulation of InsP3 3‐kinase activity by Ca2+ , 2003, FEBS letters.

[52]  Martin Falcke,et al.  Buffers and oscillations in intracellular Ca2+ dynamics. , 2003, Biophysical journal.

[53]  L. Venance,et al.  Control and Plasticity of Intercellular Calcium Waves in Astrocytes: A Modeling Approach , 2002, The Journal of Neuroscience.

[54]  J L Puglisi,et al.  LabHEART: an interactive computer model of rabbit ventricular myocyte ion channels and Ca transport. , 2001, American journal of physiology. Cell physiology.

[55]  Kenneth W. Young,et al.  Intracellular signalling: Receptor-specific messenger oscillations , 2001, Nature.

[56]  J. Foskett,et al.  Regulation by Ca2+ and Inositol 1,4,5-Trisphosphate (Insp3) of Single Recombinant Type 3 Insp3 Receptor Channels , 2001, The Journal of general physiology.

[57]  R Heinrich,et al.  Intercellular Ca2+ wave propagation through gap-junctional Ca2+ diffusion: a theoretical study. , 2001, Biophysical journal.

[58]  Robert M. Miura,et al.  Asymptotic Analysis of Buffered Calcium Diffusion near a Point Source , 2001, SIAM J. Appl. Math..

[59]  Warren R. Smith,et al.  Mathematical Modelling of Electrical-Optical Effects in Semiconductor Laser Operation , 2001, SIAM J. Appl. Math..

[60]  S Coombes,et al.  The effect of ion pumps on the speed of travelling waves in the fire-diffuse-fire model of Ca2+ release , 2001, Bulletin of mathematical biology.

[61]  K. Fogarty,et al.  The role of Ca2+ feedback in shaping InsP3‐evoked Ca2+ signals in mouse pancreatic acinar cells , 1999, The Journal of physiology.

[62]  M. Tanabe,et al.  Spatiotemporal dynamics of inositol 1,4,5-trisphosphate that underlies complex Ca2+ mobilization patterns. , 1999, Science.

[63]  J. Pearson,et al.  Fire-diffuse-fire model of dynamics of intracellular calcium waves. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[64]  E Neher,et al.  Usefulness and limitations of linear approximations to the understanding of Ca++ signals. , 1998, Cell calcium.

[65]  John E. Pearson,et al.  Crisis on skid row , 1998 .

[66]  J. Pearson,et al.  Saltatory propagation of Ca2+ waves by Ca2+ sparks. , 1998, Biophysical journal.

[67]  M. Sanderson,et al.  Calcium waves and oscillations driven by an intercellular gradient of inositol (1,4,5)-trisphosphate. , 1998, Biophysical chemistry.

[68]  R. Winslow,et al.  Cardiac Ca2+ dynamics: the roles of ryanodine receptor adaptation and sarcoplasmic reticulum load. , 1998, Biophysical journal.

[69]  G. Dupont,et al.  Simulations of the effects of inositol 1,4,5-trisphosphate 3-kinase and 5-phosphatase activities on Ca2+ oscillations. , 1997, Cell calcium.

[70]  E. Neher,et al.  Linearized Buffered Ca2+ Diffusion in Microdomains and Its Implications for Calculation of [Ca2+] at the Mouth of a Calcium Channel , 1997, The Journal of Neuroscience.

[71]  G D Smith,et al.  Analytical steady-state solution to the rapid buffering approximation near an open Ca2+ channel. , 1996, Biophysical journal.

[72]  S. B. Kater,et al.  An extracellular signaling component in propagation of astrocytic calcium waves. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[73]  S. Swillens,et al.  Quantal release, incremental detection, and long-period Ca2+ oscillations in a model based on regulatory Ca2+-binding sites along the permeation pathway. , 1996, Biophysical journal.

[74]  Bard Ermentrout,et al.  Type I Membranes, Phase Resetting Curves, and Synchrony , 1996, Neural Computation.

[75]  J. Keizer,et al.  Validity of the rapid buffering approximation near a point source of calcium ions. , 1996, Biophysical journal.

[76]  J Rinzel,et al.  Ca2+ excitability of the ER membrane: an explanation for IP3-induced Ca2+ oscillations. , 1995, The American journal of physiology.

[77]  J. Keizer,et al.  On the roles of Ca2+ diffusion, Ca2+ buffers, and the endoplasmic reticulum in IP3-induced Ca2+ waves. , 1995, Biophysical journal.

[78]  M. Sanderson,et al.  Mechanisms of calcium oscillations and waves: a quantitative analysis , 1995, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[79]  B. Wetton,et al.  Intercellular calcium waves mediated by diffusion of inositol trisphosphate: a two-dimensional model. , 1995, The American journal of physiology.

[80]  Jonathan A. Sherratt On the Evolution of Periodic Plane Waves in Reaction-Diffusion Systems of Lambda-Omega Type , 1994, SIAM J. Appl. Math..

[81]  J. Keizer,et al.  Diffusion of inositol 1,4,5-trisphosphate but not Ca2+ is necessary for a class of inositol 1,4,5-trisphosphate-induced Ca2+ waves. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[82]  I. Parker,et al.  Ca2+ influx modulation of temporal and spatial patterns of inositol trisphosphate‐mediated Ca2+ liberation in Xenopus oocytes. , 1994, The Journal of physiology.

[83]  Michael J. Sanderson,et al.  Mechanisms and function of intercellular calcium signaling , 1994, Molecular and Cellular Endocrinology.

[84]  J. Sneyd,et al.  A model for the propagation of intercellular calcium waves. , 1994, The American journal of physiology.

[85]  J. Sherratt The amplitude of periodic plane waves depends on initial conditions in a variety of lambda - omega systems , 1993 .

[86]  A. Atri,et al.  A single-pool model for intracellular calcium oscillations and waves in the Xenopus laevis oocyte. , 1993, Biophysical journal.

[87]  R. Nuccitelli,et al.  The sperm-induced Ca2+ wave following fertilization of the Xenopus egg requires the production of Ins(1, 4, 5)P3. , 1993, Developmental biology.

[88]  D. Clapham,et al.  Acceleration of intracellular calcium waves in Xenopus oocytes by calcium influx. , 1993, Science.

[89]  A Goldbeter,et al.  One-pool model for Ca2+ oscillations involving Ca2+ and inositol 1,4,5-trisphosphate as co-agonists for Ca2+ release. , 1993, Cell calcium.

[90]  J. Sneyd,et al.  Calcium wave propagation by calcium-induced calcium release: an unusual excitable system. , 1993, Bulletin of mathematical biology.

[91]  M. Pinter,et al.  Time courses of calcium and calcium-bound buffers following calcium influx in a model cell. , 1993, Biophysical journal.

[92]  J. Keizer,et al.  A single-pool inositol 1,4,5-trisphosphate-receptor-based model for agonist-stimulated oscillations in Ca2+ concentration. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[93]  M J Sanderson,et al.  Intercellular propagation of calcium waves mediated by inositol trisphosphate. , 1992, Science.

[94]  David E. Clapham,et al.  Molecular mechanisms of intracellular calcium excitability in X. laevis oocytes , 1992, Cell.

[95]  M. Stern,et al.  Buffering of calcium in the vicinity of a channel pore. , 1992, Cell calcium.

[96]  J. Keizer,et al.  Two roles of Ca2+ in agonist stimulated Ca2+ oscillations. , 1992, Biophysical journal.

[97]  D. Clapham,et al.  Spiral calcium wave propagation and annihilation in Xenopus laevis oocytes. , 1991, Science.

[98]  J. Rinzel,et al.  Model for synchronization of pancreatic beta-cells by gap junction coupling. , 1991, Biophysical journal.

[99]  Peter Grindrod,et al.  Patterns and Waves: The Theory and Applications of Reaction-Diffusion Equations , 1991 .

[100]  A. Charles,et al.  Mechanical stimulation and intercellular communication increases intracellular Ca2+ in epithelial cells. , 1990, Cell regulation.

[101]  G. Ermentrout,et al.  Phase transition and other phenomena in chains of coupled oscilators , 1990 .

[102]  F. Sala,et al.  Calcium diffusion modeling in a spherical neuron. Relevance of buffering properties. , 1990, Biophysical journal.

[103]  A Goldbeter,et al.  Minimal model for signal-induced Ca2+ oscillations and for their frequency encoding through protein phosphorylation. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[104]  J. Kevorkian,et al.  Partial Differential Equations: Analytical Solution Techniques , 1990 .

[105]  H. T. ter Keurs,et al.  A model of propagating calcium-induced calcium release mediated by calcium diffusion , 1989, The Journal of general physiology.

[106]  J. Keener,et al.  Singular perturbation theory of traveling waves in excitable media (a review) , 1988 .

[107]  J. Rinzel,et al.  Emergence of organized bursting in clusters of pancreatic beta-cells by channel sharing. , 1988, Biophysical journal.

[108]  L. Stryer,et al.  Molecular model for receptor-stimulated calcium spiking. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[109]  Michael C. Mackey,et al.  From Clocks to Chaos , 1988 .

[110]  R Y Tsien,et al.  Agonist-induced calcium oscillations in depolarized fibroblasts and their manipulation by photoreleased Ins(1,4,5)P3, Ca++, and Ca++ buffer. , 1988, Cold Spring Harbor symposia on quantitative biology.

[111]  N. Britton Reaction-diffusion equations and their applications to biology. , 1989 .

[112]  L Glass,et al.  Phase resetting of spontaneously beating embryonic ventricular heart cell aggregates. , 1986, The American journal of physiology.

[113]  G. Ermentrout,et al.  Symmetry and phaselocking in chains of weakly coupled oscillators , 1986 .

[114]  Kenjiro Maginu Geometrical Characteristics Associated with Stability and Bifurcations of Periodic Travelling Waves in Reaction-Diffusion Systems , 1985 .

[115]  D. Spray,et al.  Physiology and pharmacology of gap junctions. , 1985, Annual review of physiology.

[116]  G. Ermentrout,et al.  Frequency Plateaus in a Chain of Weakly Coupled Oscillators, I. , 1984 .

[117]  S. Hastings Single and Multiple Pulse Waves for the FitzHugh–Nagumo , 1982 .

[118]  K Kuba,et al.  Simulation of intracellular Ca2+ oscillation in a sympathetic neurone. , 1981, Journal of theoretical biology.

[119]  Nancy Kopell,et al.  Target pattern and spiral solutions to reaction-diffusion equations with more than one space dimension , 1981 .

[120]  A. Winfree The geometry of biological time , 1991 .

[121]  James P. Keener,et al.  Waves in Excitable Media , 1980 .

[122]  A. Fabiato,et al.  CALCIUM‐INDUCED RELEASE OF CALCIUM FROM THE SARCOPLASMIC RETICULUM OF SKINNED CELLS FROM ADULT HUMAN, DOG, CAT, RABBIT, RAT, AND FROG HEARTS AND FROM FETAL AND NEW‐BORN RAT VENTRICLES * , 1978, Annals of the New York Academy of Sciences.

[123]  J. Rinzel Repetitive activity and hopf bifurcation under point-stimulation for a simple FitzHugh-Nagumo nerve conduction model , 1977, Journal of mathematical biology.

[124]  Joel Smoller,et al.  Qualitative theory of the FitzHugh-Nagumo equations , 1978 .

[125]  William C. Troy,et al.  Bifurcation phenomena in FitzHugh's nerve conduction equations , 1976 .

[126]  S. Hastings ON THE EXISTENCE OF HOMOCLINIC AND PERIODIC ORBITS FOR THE FITZHUGH-NAGUMO EQUATIONS , 1976 .

[127]  A. Fabiato,et al.  Contractions induced by a calcium‐triggered release of calcium from the sarcoplasmic reticulum of single skinned cardiac cells. , 1975, The Journal of physiology.

[128]  Nancy Kopell,et al.  Plane Wave Solutions to Reaction‐Diffusion Equations , 1973 .

[129]  N. Kopell,et al.  Horizontal Bands in the Belousov Reaction , 1973, Science.

[130]  M. Endo,et al.  Calcium Induced Release of Calcium from the Sarcoplasmic Reticulum of Skinned Skeletal Muscle Fibres , 1970, Nature.

[131]  H. McKean Nagumo's equation , 1970 .

[132]  S. Yoshizawa,et al.  An Active Pulse Transmission Line Simulating Nerve Axon , 1962, Proceedings of the IRE.

[133]  R. FitzHugh Impulses and Physiological States in Theoretical Models of Nerve Membrane. , 1961, Biophysical journal.

[134]  R. FitzHugh Thresholds and Plateaus in the Hodgkin-Huxley Nerve Equations , 1960, The Journal of general physiology.

[135]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.