Efficient computation of steady solitary gravity waves

An efficient numerical method to compute solitary wave solutions to the free surface Euler equations is reported. It is based on the conformal mapping technique combined with an efficient Fourier pseudo-spectral method. The resulting nonlinear equation is solved via the Petviashvili iterative scheme. The computational results are compared to some existing approaches, such as the Tanaka method and Fenton's high-order asymptotic expansion. Several important integral quantities are numerically computed for a large range of amplitudes. The integral representation of the velocity and acceleration fields in the bulk of the fluid is also provided.

[1]  D. Clamond Note on the velocity and related fields of steady irrotational two-dimensional surface gravity waves , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[2]  Frédéric Dias,et al.  NONLINEAR GRAVITY AND CAPILLARY-GRAVITY WAVES , 1999 .

[3]  A. Scott THE SOLITARY WAVE , 1990 .

[4]  Hisashi Okamoto,et al.  The mathematical theory of permanent progressive water-waves , 2001 .

[5]  E. C. Titchmarsh,et al.  The theory of functions , 1933 .

[6]  D. Dutykh,et al.  PRACTICAL USE OF VARIATIONAL PRINCIPLES FOR MODELING WATER WAVES , 2010, 1002.3019.

[7]  S. Manakov,et al.  On the complete integrability of a nonlinear Schrödinger equation , 1974 .

[8]  Dimitrios Mitsotakis,et al.  Theory and Numerical Analysis of Boussinesq Systems: A Review , 2008 .

[9]  F. Serre,et al.  CONTRIBUTION À L'ÉTUDE DES ÉCOULEMENTS PERMANENTS ET VARIABLES DANS LES CANAUX , 1953 .

[10]  Yehuda B. Band,et al.  Optical Solitary Waves in the Higher Order Nonlinear Schrödinger Equation , 1996, patt-sol/9612004.

[11]  Michael Selwyn Longuet-Higgins,et al.  On the mass, momentum, energy and circulation of a solitary wave , 1974, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[12]  Walter Craig,et al.  Numerical simulation of gravity waves , 1993 .

[13]  C. S. Gardner,et al.  Method for solving the Korteweg-deVries equation , 1967 .

[14]  Colin J. Cotter,et al.  Variational water-wave model with accurate dispersion and vertical vorticity , 2010 .

[15]  John M'Cowan,et al.  On the solitary wave , 1890, Proceedings of the Edinburgh Mathematical Society.

[16]  Alfred R. Osborne,et al.  Nonlinear Ocean Waves and the Inverse Scattering Transform , 2010 .

[17]  John Grue,et al.  An efficient model for three-dimensional surface wave simulations , 2005 .

[18]  G. Patrick,et al.  Relative equilibria in Hamiltonian systems: The dynamic interpretation of nonlinear stability on a reduced phase space , 1992 .

[19]  M. Longuet-Higgins,et al.  On the crest instabilities of steep surface waves , 1997, Journal of Fluid Mechanics.

[20]  W. Kahan,et al.  On a proposed floating-point standard , 1979, SGNM.

[21]  D. Clamond Steady finite-amplitude waves on a horizontal seabed of arbitrary depth , 1999, Journal of Fluid Mechanics.

[22]  Frédéric Dias,et al.  On the fully-nonlinear shallow-water generalized Serre equations , 2010 .

[23]  D. Clamond Cnoidal-type surface waves in deep water , 2003, Journal of Fluid Mechanics.

[24]  P. Milewski,et al.  Finite volume and pseudo-spectral schemes for the fully nonlinear 1D Serre equations , 2011, European Journal of Applied Mathematics.

[25]  G. Fibich Stability of Solitary Waves , 2015 .

[26]  A. Voronovich,et al.  Numerical Simulation of Wave Breaking , 2011 .

[27]  Taras I. Lakoba,et al.  A generalized Petviashvili iteration method for scalar and vector Hamiltonian equations with arbitrary form of nonlinearity , 2007, J. Comput. Phys..

[28]  James M. Hyman,et al.  A Numerical Study of the Exact Evolution Equations for Surface Waves in Water of Finite Depth , 2004 .

[29]  Roberto Camassa,et al.  Exact Evolution Equations for Surface Waves , 1999 .

[30]  F. Fedele,et al.  Special solutions to a compact equation for deep-water gravity waves , 2012, Journal of Fluid Mechanics.

[31]  Dmitry Pelinovsky,et al.  Convergence of Petviashvili's Iteration Method for Numerical Approximation of Stationary Solutions of Nonlinear Wave Equations , 2004, SIAM J. Numer. Anal..

[32]  N. Zabusky,et al.  Interaction of "Solitons" in a Collisionless Plasma and the Recurrence of Initial States , 1965 .

[33]  Jianke Yang,et al.  Nonlinear Waves in Integrable and Nonintegrable Systems , 2010, Mathematical modeling and computation.

[34]  F. Fedele,et al.  Hamiltonian form and solitary waves of the spatial Dysthe equations , 2011, 1110.4083.

[35]  Philipp Birken,et al.  Numerical Linear Algebra , 2011, Encyclopedia of Parallel Computing.

[36]  Alexander M. Rubenchik,et al.  Soliton stability in plasmas and hydrodynamics , 1986 .

[37]  Walter Craig,et al.  Traveling gravity water waves in two and three dimensions , 2002 .

[38]  Michael Selwyn Longuet-Higgins,et al.  On the mass, momentum, energy and circulation of a solitary wave. II , 1974, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[39]  Mikhail Alekseevich Lavrentʹev,et al.  Methoden der komplexen Funktionentheorie , 1967 .

[40]  P. Drazin,et al.  Solitons: An Introduction , 1989 .

[41]  J. M. M. B.Sc. VII. On the solitary wave , 1891 .

[42]  K. Lonngren Soliton experiments in plasmas , 1983 .

[43]  John D. Fenton,et al.  A Fourier method for solving nonlinear water-wave problems: application to solitary-wave interactions , 1982, Journal of Fluid Mechanics.

[44]  A. Dervieux,et al.  NUMERICAL SIMULATIONS OF WAVE BREAKING , 2005 .

[45]  Min Chen Solitary-wave and multi-pulsed traveling-wave solutions of boussinesq systems , 2000 .

[46]  R. Miura The Korteweg–deVries Equation: A Survey of Results , 1976 .

[47]  J. Tukey,et al.  An algorithm for the machine calculation of complex Fourier series , 1965 .

[48]  Min Chen Exact Traveling-Wave Solutions to Bidirectional Wave Equations , 1998 .

[49]  J. C. Luke A variational principle for a fluid with a free surface , 1967, Journal of Fluid Mechanics.

[50]  J. Escher,et al.  Pressure Beneath a Solitary Water Wave: Mathematical Theory and Experiments , 2011 .

[51]  P. Cvitanović,et al.  Periodic orbit expansions for classical smooth flows , 1991 .

[52]  Philippe Guyenne,et al.  Solitary water wave interactions , 2006 .

[53]  W. Malfliet Solitary wave solutions of nonlinear wave equations , 1992 .

[54]  H. Keller,et al.  Analysis of Numerical Methods , 1967 .

[55]  C. S. Gardner,et al.  Korteweg-devries equation and generalizations. VI. methods for exact solution , 1974 .

[56]  P. Sternberg,et al.  Symmetry of solitary waves , 1988 .

[57]  J-M Vanden-Broeck,et al.  Solitary waves in water: numerical methods and results , 2007 .

[58]  P. M. Naghdi,et al.  A derivation of equations for wave propagation in water of variable depth , 1976, Journal of Fluid Mechanics.

[59]  J. Fenton A ninth-order solution for the solitary wave , 1972, Journal of Fluid Mechanics.

[60]  Denys Dutykh,et al.  Fast accurate computation of the fully nonlinear solitary surface gravity waves , 2012, 1212.0289.

[61]  P. Milewski,et al.  Dynamics of steep two-dimensional gravity–capillary solitary waves , 2010, Journal of Fluid Mechanics.