Efficient computation of steady solitary gravity waves
暂无分享,去创建一个
[1] D. Clamond. Note on the velocity and related fields of steady irrotational two-dimensional surface gravity waves , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[2] Frédéric Dias,et al. NONLINEAR GRAVITY AND CAPILLARY-GRAVITY WAVES , 1999 .
[3] A. Scott. THE SOLITARY WAVE , 1990 .
[4] Hisashi Okamoto,et al. The mathematical theory of permanent progressive water-waves , 2001 .
[5] E. C. Titchmarsh,et al. The theory of functions , 1933 .
[6] D. Dutykh,et al. PRACTICAL USE OF VARIATIONAL PRINCIPLES FOR MODELING WATER WAVES , 2010, 1002.3019.
[7] S. Manakov,et al. On the complete integrability of a nonlinear Schrödinger equation , 1974 .
[8] Dimitrios Mitsotakis,et al. Theory and Numerical Analysis of Boussinesq Systems: A Review , 2008 .
[9] F. Serre,et al. CONTRIBUTION À L'ÉTUDE DES ÉCOULEMENTS PERMANENTS ET VARIABLES DANS LES CANAUX , 1953 .
[10] Yehuda B. Band,et al. Optical Solitary Waves in the Higher Order Nonlinear Schrödinger Equation , 1996, patt-sol/9612004.
[11] Michael Selwyn Longuet-Higgins,et al. On the mass, momentum, energy and circulation of a solitary wave , 1974, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[12] Walter Craig,et al. Numerical simulation of gravity waves , 1993 .
[13] C. S. Gardner,et al. Method for solving the Korteweg-deVries equation , 1967 .
[14] Colin J. Cotter,et al. Variational water-wave model with accurate dispersion and vertical vorticity , 2010 .
[15] John M'Cowan,et al. On the solitary wave , 1890, Proceedings of the Edinburgh Mathematical Society.
[16] Alfred R. Osborne,et al. Nonlinear Ocean Waves and the Inverse Scattering Transform , 2010 .
[17] John Grue,et al. An efficient model for three-dimensional surface wave simulations , 2005 .
[18] G. Patrick,et al. Relative equilibria in Hamiltonian systems: The dynamic interpretation of nonlinear stability on a reduced phase space , 1992 .
[19] M. Longuet-Higgins,et al. On the crest instabilities of steep surface waves , 1997, Journal of Fluid Mechanics.
[20] W. Kahan,et al. On a proposed floating-point standard , 1979, SGNM.
[21] D. Clamond. Steady finite-amplitude waves on a horizontal seabed of arbitrary depth , 1999, Journal of Fluid Mechanics.
[22] Frédéric Dias,et al. On the fully-nonlinear shallow-water generalized Serre equations , 2010 .
[23] D. Clamond. Cnoidal-type surface waves in deep water , 2003, Journal of Fluid Mechanics.
[24] P. Milewski,et al. Finite volume and pseudo-spectral schemes for the fully nonlinear 1D Serre equations , 2011, European Journal of Applied Mathematics.
[25] G. Fibich. Stability of Solitary Waves , 2015 .
[26] A. Voronovich,et al. Numerical Simulation of Wave Breaking , 2011 .
[27] Taras I. Lakoba,et al. A generalized Petviashvili iteration method for scalar and vector Hamiltonian equations with arbitrary form of nonlinearity , 2007, J. Comput. Phys..
[28] James M. Hyman,et al. A Numerical Study of the Exact Evolution Equations for Surface Waves in Water of Finite Depth , 2004 .
[29] Roberto Camassa,et al. Exact Evolution Equations for Surface Waves , 1999 .
[30] F. Fedele,et al. Special solutions to a compact equation for deep-water gravity waves , 2012, Journal of Fluid Mechanics.
[31] Dmitry Pelinovsky,et al. Convergence of Petviashvili's Iteration Method for Numerical Approximation of Stationary Solutions of Nonlinear Wave Equations , 2004, SIAM J. Numer. Anal..
[32] N. Zabusky,et al. Interaction of "Solitons" in a Collisionless Plasma and the Recurrence of Initial States , 1965 .
[33] Jianke Yang,et al. Nonlinear Waves in Integrable and Nonintegrable Systems , 2010, Mathematical modeling and computation.
[34] F. Fedele,et al. Hamiltonian form and solitary waves of the spatial Dysthe equations , 2011, 1110.4083.
[35] Philipp Birken,et al. Numerical Linear Algebra , 2011, Encyclopedia of Parallel Computing.
[36] Alexander M. Rubenchik,et al. Soliton stability in plasmas and hydrodynamics , 1986 .
[37] Walter Craig,et al. Traveling gravity water waves in two and three dimensions , 2002 .
[38] Michael Selwyn Longuet-Higgins,et al. On the mass, momentum, energy and circulation of a solitary wave. II , 1974, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[39] Mikhail Alekseevich Lavrentʹev,et al. Methoden der komplexen Funktionentheorie , 1967 .
[40] P. Drazin,et al. Solitons: An Introduction , 1989 .
[41] J. M. M. B.Sc.. VII. On the solitary wave , 1891 .
[42] K. Lonngren. Soliton experiments in plasmas , 1983 .
[43] John D. Fenton,et al. A Fourier method for solving nonlinear water-wave problems: application to solitary-wave interactions , 1982, Journal of Fluid Mechanics.
[44] A. Dervieux,et al. NUMERICAL SIMULATIONS OF WAVE BREAKING , 2005 .
[45] Min Chen. Solitary-wave and multi-pulsed traveling-wave solutions of boussinesq systems , 2000 .
[46] R. Miura. The Korteweg–deVries Equation: A Survey of Results , 1976 .
[47] J. Tukey,et al. An algorithm for the machine calculation of complex Fourier series , 1965 .
[48] Min Chen. Exact Traveling-Wave Solutions to Bidirectional Wave Equations , 1998 .
[49] J. C. Luke. A variational principle for a fluid with a free surface , 1967, Journal of Fluid Mechanics.
[50] J. Escher,et al. Pressure Beneath a Solitary Water Wave: Mathematical Theory and Experiments , 2011 .
[51] P. Cvitanović,et al. Periodic orbit expansions for classical smooth flows , 1991 .
[52] Philippe Guyenne,et al. Solitary water wave interactions , 2006 .
[53] W. Malfliet. Solitary wave solutions of nonlinear wave equations , 1992 .
[54] H. Keller,et al. Analysis of Numerical Methods , 1967 .
[55] C. S. Gardner,et al. Korteweg-devries equation and generalizations. VI. methods for exact solution , 1974 .
[56] P. Sternberg,et al. Symmetry of solitary waves , 1988 .
[57] J-M Vanden-Broeck,et al. Solitary waves in water: numerical methods and results , 2007 .
[58] P. M. Naghdi,et al. A derivation of equations for wave propagation in water of variable depth , 1976, Journal of Fluid Mechanics.
[59] J. Fenton. A ninth-order solution for the solitary wave , 1972, Journal of Fluid Mechanics.
[60] Denys Dutykh,et al. Fast accurate computation of the fully nonlinear solitary surface gravity waves , 2012, 1212.0289.
[61] P. Milewski,et al. Dynamics of steep two-dimensional gravity–capillary solitary waves , 2010, Journal of Fluid Mechanics.