Finite element method with local damage of the mesh

We consider the finite element method on locally damaged meshes allowing for some distorted cells which are isolated from one another. In the case of the Poisson equation and piecewise linear Lagrange finite elements, we show that the usual a priori error estimates remain valid on such meshes. We also propose an alternative finite element scheme which is optimally convergent and, moreover, well conditioned, i.e. the conditioning number of the associated finite element matrix is of the same order as that of a standard finite element method on a regular mesh of comparable size.

[1]  Anders Logg,et al.  Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book , 2012 .

[2]  T. Apel Anisotropic Finite Elements: Local Estimates and Applications , 1999 .

[3]  M. Krízek,et al.  On the maximum angle condition for linear tetrahedral elements , 1992 .

[4]  Miloš Zlámal,et al.  On the finite element method , 1968 .

[5]  Pierre Jamet Estimation of the Interpolation Error for Quadrilateral Finite Elements Which Can Degenerate into Triangles , 1977 .

[6]  P. Jamet Estimations d'erreur pour des éléments finis droits presque dégénérés , 1976 .

[7]  Kenta Kobayashi,et al.  On the circumradius condition for piecewise linear triangular elements , 2013, 1308.2113.

[8]  Yohan Payan,et al.  A fast and robust patient specific Finite Element mesh registration technique: Application to 60 clinical cases , 2010, Medical Image Anal..

[9]  M. Gockenbach Convergence of the Finite Element Method , 2006 .

[10]  Jaroslav Haslinger,et al.  A New Fictitious Domain Approach Inspired by the Extended Finite Element Method , 2009, SIAM J. Numer. Anal..

[11]  Antti Hannukainen,et al.  The maximum angle condition is not necessary for convergence of the finite element method , 2012, Numerische Mathematik.

[12]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[13]  Jan Malý,et al.  Fine Regularity of Solutions of Elliptic Partial Differential Equations , 1997 .

[14]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[15]  J. Brandts,et al.  Generalization of the Zlámal condition for simplicial finite elements in ℝd , 2011 .

[16]  On necessary and sufficient conditions for finite element convergence , 2016 .

[17]  Sergey Korotov,et al.  On the equivalence of regularity criteria for triangular and tetrahedral finite element partitions , 2008, Comput. Math. Appl..

[18]  John A. Gregory,et al.  Sard kernel theorems on triangular domains with application to finite element error bounds , 1975 .

[19]  Divergence of fem: Babuška-Aziz triangulations revisited , 2015 .

[20]  Peter Hansbo,et al.  CutFEM: Discretizing geometry and partial differential equations , 2015 .

[21]  I. Babuska,et al.  ON THE ANGLE CONDITION IN THE FINITE ELEMENT METHOD , 1976 .