An Algebraic Approach to Linear and Nonlinear Control

The analysis and design of control systems has been greatly influenced by the mathematical tools being used. Maxwell introduced linear differential equations in the 1860’s. Nyquist, Bode and others started the systematic use of tranfer functions, utilizing complex analysis in the 1930’s. Kalman brought forward state space analysis around 1960. For nonlinear systems, differential geometric concepts have been of great value recently. We will argue here that algebraic methods can be very useful for both linear and nonlinear systems. To give some motivation we will begin by looking at a few examples.

[1]  D. Hilbert,et al.  Über den Begriff der Klasse von Differentialgleichungen , 1912 .

[2]  H. Weyl The Classical Groups , 1939 .

[3]  E. R. Kolchin Extensions of differential fields. III , 1947 .

[4]  L. W. Cohen Review: J. F. Ritt, Theory of functions , 1950 .

[5]  Michael A. Arbib,et al.  Topics in Mathematical System Theory , 1969 .

[6]  Joseph Johnson,et al.  Kahler Differentials and Differential Algebra , 1969 .

[7]  H. Sussmann,et al.  Controllability of nonlinear systems , 1972 .

[8]  P. Cohn Free rings and their relations , 1973 .

[9]  Wilson J. Rugh,et al.  Mathematical Description of Linear Systems , 1976 .

[10]  A. Krener,et al.  Nonlinear controllability and observability , 1977 .

[11]  M. Freedman,et al.  Smooth representation of systems with differentiated inputs , 1978 .

[12]  Thomas Kailath,et al.  Linear Systems , 1980 .

[13]  A. Isidori Nonlinear Control Systems , 1985 .

[14]  Jürgen Ackermann,et al.  Sampled-Data Control Systems , 1985 .

[15]  J. Willems,et al.  DETERMINISTIC ARMA MODELS , 1986 .

[16]  Jan C. Willems,et al.  From time series to linear system - Part II. Exact modelling , 1986, Autom..

[17]  Jan C. Willems,et al.  From time series to linear system - Part I. Finite dimensional linear time invariant systems , 1986, Autom..

[18]  Jan C. Willems,et al.  From time series to linear system - Part III: Approximate modelling , 1987, Autom..

[19]  Eduardo D. Sontag,et al.  Finite-dimensional open-loop control generators for non-linear systems , 1988 .

[20]  Jean-François Pommaret,et al.  Lie Pseudogroups And Mechanics , 1988 .

[21]  Torkel Glad,et al.  Nonlinear State Space and Input Output Descriptions using Differential Polynomials (Revised Version) , 1988 .

[22]  A. Wyner,et al.  Analysis and Optimization of Systems , 1988 .

[23]  M. Sain,et al.  Research on system zeros: a survey , 1989 .

[24]  M. Fliess Automatique et corps différentiels , 1989 .

[25]  Alberto Isidori,et al.  New Trends in Nonlinear Control Theory , 1989 .

[26]  Jan C. Willems,et al.  Models for Dynamics , 1989 .

[27]  Martin Hasler,et al.  Questioning the Classic State-Space Description Via Circuit Examples , 1990 .

[28]  L. Ljung,et al.  Model structure identifiability and persistence of excitation , 1990, 29th IEEE Conference on Decision and Control.

[29]  S. T. Glad,et al.  Differential Algebraic Modelling of Nonlinear Systems , 1990 .

[30]  Michel Fliess,et al.  Generalized controller canonical form for linear and nonlinear dynamics , 1990 .

[31]  F. Ollivier Le probleme de l'identifiabilite structurelle globale : approche theorique, methodes effectives et bornes de complexite , 1990 .

[32]  Arjan van der Schaft,et al.  Non-linear dynamical control systems , 1990 .

[33]  M. Fliess,et al.  Vers une stabilisation non linéaire discontinue , 1990 .

[34]  J. Willems Paradigms and puzzles in the theory of dynamical systems , 1991 .

[35]  Sette Diop,et al.  Elimination in control theory , 1991, Math. Control. Signals Syst..

[36]  M. Fliess,et al.  Nonlinear observability, identifiability, and persistent trajectories , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[37]  Michel Fliess,et al.  A simple definition of hidden modes, poles and zeros , 1991, Kybernetika.

[38]  M. Fliess Some basic structural properties of generalized linear systems , 1991 .

[39]  Torkel Glad,et al.  Nonlinear Regulators and Ritt’s Remainder Algorithm , 1991 .

[40]  K. Forsman Constructive Commutative Algebra in Nonlinear Control Theory , 1991 .

[41]  M. Fliess,et al.  A simplified approach of crane control via a generalized state-space model , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[42]  E. Delaleau,et al.  Algirthme de structure, filtrations de découplage , 1992 .

[43]  S. Glad Implementing Ritt’s Algorithm of Differential Algebra , 1992 .

[44]  W. Respondek,et al.  Removing input derivatives and lowering their orders in generalized state-space representations , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[45]  Sette Diop,et al.  Differential-Algebraic Decision Methods and some Applications to System Theory , 1992, Theor. Comput. Sci..

[46]  M. Fliess,et al.  Sur les systèmes non linéaires différentiellement plats , 1992 .

[47]  M. Fliess A remark on Willems' trajectory characterization of linear controllability , 1992 .

[48]  Eduardo Sontag Universal nonsingular controls , 1993 .

[49]  Pierre Rouchon,et al.  Index of an implicit time-varying linear differential equation: a noncommutative linear algebraic approach , 1993 .

[50]  J. Coron Linearized Control Systems and Applications to Smooth Stabilization , 1994 .