A multigrid finite element solver for the Cahn-Hilliard equation

A multigrid finite element solver for the Cahn-Hilliard equation is presented that has mesh-independent convergence rates for any time-step size, including in the important limit @e->0 which is examined via numerical examples. Numerics are performed for a number of test problems which show that the features of the Cahn-Hilliard equation (minimising interface measure, Lyapunov energy functional etc.) are preserved. We also explore the use of this solver in conjunction with adaptive time-stepping and adaptive mesh strategies.

[1]  B. Vollmayr-Lee,et al.  Fast and accurate coarsening simulation with an unconditionally stable time step. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  Charles M. Elliott,et al.  The Cahn-Hilliard Model for the Kinetics of Phase Separation , 1989 .

[3]  Charles M. Elliott,et al.  The Cahn–Hilliard gradient theory for phase separation with non-smooth free energy Part II: Numerical analysis , 1991, European Journal of Applied Mathematics.

[4]  Andreas Prohl,et al.  Numerical analysis of the Cahn-Hilliard equation and approximation for the Hele-Shaw problem, Part I: Error analysis under minimum regularities , 2001 .

[5]  Andreas Prohl,et al.  Numerical analysis of the Cahn-Hilliard equation and approximation for the Hele-Shaw problem, Part II: Error analysis and convergence of the interface , 2001 .

[6]  J. Lowengrub,et al.  Conservative multigrid methods for Cahn-Hilliard fluids , 2004 .

[7]  Peter W. Bates,et al.  Convergence of the Cahn-Hilliard equation to the Hele-Shaw model , 1994 .

[8]  John W. Barrett,et al.  Finite Element Approximation of a Phase Field Model for Void Electromigration , 2004, SIAM J. Numer. Anal..

[9]  L. Modica The gradient theory of phase transitions and the minimal interface criterion , 1987 .

[10]  Charles M. Elliott,et al.  A second order splitting method for the Cahn-Hilliard equation , 1989 .

[11]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[12]  Robert L. Pego,et al.  Front migration in the nonlinear Cahn-Hilliard equation , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[13]  D. Keyes,et al.  Jacobian-free Newton-Krylov methods: a survey of approaches and applications , 2004 .

[14]  Harald Garcke,et al.  Finite Element Approximation of the Cahn-Hilliard Equation with Degenerate Mobility , 1999, SIAM J. Numer. Anal..

[15]  Jinchao Xu,et al.  Iterative Methods by Space Decomposition and Subspace Correction , 1992, SIAM Rev..

[16]  John W. Cahn,et al.  Linking anisotropic sharp and diffuse surface motion laws via gradient flows , 1994 .

[17]  Charles M. Elliott,et al.  Error estimates with smooth and nonsmooth data for a finite element method for the Cahn-Hilliard equation , 1992 .

[18]  Bath Ba THE GLOBAL DYNAMICS OF DISCRETE SEMILINEAR PARABOLIC EQUATIONS , 1993 .

[19]  C. M. Elliott,et al.  Numerical Studies of the Cahn-Hilliard Equation for Phase Separation , 1987 .

[20]  P. Wesseling An Introduction to Multigrid Methods , 1992 .

[21]  F. Otto,et al.  Upper Bounds on Coarsening Rates , 2002 .

[22]  E. Favvas,et al.  What is spinodal decomposition , 2008 .

[23]  Ralf Kornhuber,et al.  On multigrid methods for vector-valued Allen-Cahn equations , 2003 .

[24]  Franck Boyer,et al.  A theoretical and numerical model for the study of incompressible mixture flows , 2002 .

[25]  Xinfu Chen,et al.  Global asymptotic limit of solutions of the Cahn-Hilliard equation , 1996 .