A Bloch Wave Numerical Scheme for Scattering Problems in Periodic Wave-Guides
暂无分享,去创建一个
[1] H. Helmholtz. Theorie der Luftschwingungen in Röhren mit offenen Enden. , 1860 .
[2] Christophe Hazard,et al. Diffraction by a Defect in an Open Waveguide: A Mathematical Analysis Based on a Modal Radiation Condition , 2009, SIAM J. Appl. Math..
[3] A. L. Efros,et al. Dielectric photonic crystal as medium with negative electric permittivity and magnetic permeability , 2004 .
[4] Ben Schweizer,et al. A Negative Index Meta-Material for Maxwell's Equations , 2015, SIAM J. Math. Anal..
[5] B. Haasdonk,et al. A new local reduced basis discontinuous Galerkin approach for heterogeneous multiscale problems , 2011 .
[6] H. Alt,et al. Linear Functional Analysis , 2016 .
[7] P. Kuchment. The mathematics of photonic crystals , 2001 .
[8] Tomás Dohnal,et al. Bloch-Wave Homogenization on Large Time Scales and Dispersive Effective Wave Equations , 2013, Multiscale Model. Simul..
[9] Sonia Fliss,et al. Solutions of the Time-Harmonic Wave Equation in Periodic Waveguides: Asymptotic Behaviour and Radiation Condition , 2016 .
[10] A SIAMJ.,et al. HOMOGENIZATION OF PERIODIC STRUCTURES VIA BLOCH DECOMPOSITION , 1997 .
[11] A. L. Efros,et al. Diffraction theory and focusing of light by a slab of left-handed material ☆ , 2003 .
[12] Grégoire Allaire,et al. BLOCH WAVE HOMOGENIZATION AND SPECTRAL ASYMPTOTIC ANALYSIS , 1998 .
[13] S. A. Nazarov,et al. Umov-Mandelshtam radiation conditions in elastic periodic waveguides , 2014 .
[14] Dirk Klindworth,et al. Robin-to-Robin transparent boundary conditions for the computation of guided modes in photonic crystal wave-guides , 2015 .
[15] Sonia Fliss,et al. A Dirichlet-to-Neumann Approach for The Exact Computation of Guided Modes in Photonic Crystal Waveguides , 2012, SIAM J. Sci. Comput..
[16] Maria Radosz. New limiting absorption and limit amplitude principles for periodic operators , 2015 .
[17] Guy Bouchitté,et al. Homogenization of Maxwell's Equations in a Split Ring Geometry , 2010, Multiscale Model. Simul..
[18] A. Bensoussan,et al. Asymptotic analysis for periodic structures , 1979 .
[19] V. Hoang,et al. Absence of bound states for waveguides in 2D periodic structures , 2011, 1111.4578.
[20] Sonia Fliss,et al. Exact boundary conditions for periodic waveguides containing a local perturbation , 2006 .
[21] Sonia Fliss,et al. Exact boundary conditions for time-harmonic wave propagation in locally perturbed periodic media , 2009 .
[22] Ben Schweizer,et al. Outgoing wave conditions in photonic crystals and transmission properties at interfaces , 2015, ESAIM: Mathematical Modelling and Numerical Analysis.
[23] Steven G. Johnson,et al. All-angle negative refraction without negative effective index , 2002 .
[24] Ivo Babuška,et al. The generalized finite element method for Helmholtz equation: Theory, computation, and open problems , 2006 .
[25] Frank Schmidt,et al. Solving Time-Harmonic Scattering Problems Based on the Pole Condition II: Convergence of the PML Method , 2003, SIAM J. Math. Anal..
[26] Sonia Fliss,et al. Wave propagation in locally perturbed periodic media (case with absorption): Numerical aspects , 2012, J. Comput. Phys..
[27] Steven G. Johnson,et al. Photonic Crystals: Molding the Flow of Light , 1995 .
[28] Guy Bouchitté,et al. Negative refraction in periodic and random photonic crystals , 2005 .
[29] Frank Schmidt,et al. Solving Time-Harmonic Scattering Problems Based on the Pole Condition I: Theory , 2003, SIAM J. Math. Anal..
[30] J. Pendry,et al. Negative refraction makes a perfect lens , 2000, Physical review letters.
[31] Ben Schweizer,et al. Effective Maxwell Equations in a Geometry with Flat Rings of Arbitrary Shape , 2013, SIAM J. Math. Anal..
[32] Vu Hoang,et al. The Limiting Absorption Principle for a Periodic Semi-Infinite Waveguide , 2011, SIAM J. Appl. Math..