A Bloch Wave Numerical Scheme for Scattering Problems in Periodic Wave-Guides

We present a new numerical scheme to solve the Helmholtz equation in a wave-guide. We consider a medium that is bounded in the $x_2$-direction, unbounded in the $x_1$-direction and $\varepsilon$-periodic for large $|x_1|$, allowing different media on the left and on the right. We suggest a new numerical method that is based on a truncation of the domain and the use of Bloch wave ansatz functions in radiation boxes. We prove the existence and a stability estimate for the infinite dimensional version of the proposed problem. The scheme is tested on several interfaces of homogeneous and periodic media and it is used to investigate the effect of negative refraction at the interface of a photonic crystal with a positive effective refractive index.

[1]  H. Helmholtz Theorie der Luftschwingungen in Röhren mit offenen Enden. , 1860 .

[2]  Christophe Hazard,et al.  Diffraction by a Defect in an Open Waveguide: A Mathematical Analysis Based on a Modal Radiation Condition , 2009, SIAM J. Appl. Math..

[3]  A. L. Efros,et al.  Dielectric photonic crystal as medium with negative electric permittivity and magnetic permeability , 2004 .

[4]  Ben Schweizer,et al.  A Negative Index Meta-Material for Maxwell's Equations , 2015, SIAM J. Math. Anal..

[5]  B. Haasdonk,et al.  A new local reduced basis discontinuous Galerkin approach for heterogeneous multiscale problems , 2011 .

[6]  H. Alt,et al.  Linear Functional Analysis , 2016 .

[7]  P. Kuchment The mathematics of photonic crystals , 2001 .

[8]  Tomás Dohnal,et al.  Bloch-Wave Homogenization on Large Time Scales and Dispersive Effective Wave Equations , 2013, Multiscale Model. Simul..

[9]  Sonia Fliss,et al.  Solutions of the Time-Harmonic Wave Equation in Periodic Waveguides: Asymptotic Behaviour and Radiation Condition , 2016 .

[10]  A SIAMJ.,et al.  HOMOGENIZATION OF PERIODIC STRUCTURES VIA BLOCH DECOMPOSITION , 1997 .

[11]  A. L. Efros,et al.  Diffraction theory and focusing of light by a slab of left-handed material ☆ , 2003 .

[12]  Grégoire Allaire,et al.  BLOCH WAVE HOMOGENIZATION AND SPECTRAL ASYMPTOTIC ANALYSIS , 1998 .

[13]  S. A. Nazarov,et al.  Umov-Mandelshtam radiation conditions in elastic periodic waveguides , 2014 .

[14]  Dirk Klindworth,et al.  Robin-to-Robin transparent boundary conditions for the computation of guided modes in photonic crystal wave-guides , 2015 .

[15]  Sonia Fliss,et al.  A Dirichlet-to-Neumann Approach for The Exact Computation of Guided Modes in Photonic Crystal Waveguides , 2012, SIAM J. Sci. Comput..

[16]  Maria Radosz New limiting absorption and limit amplitude principles for periodic operators , 2015 .

[17]  Guy Bouchitté,et al.  Homogenization of Maxwell's Equations in a Split Ring Geometry , 2010, Multiscale Model. Simul..

[18]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[19]  V. Hoang,et al.  Absence of bound states for waveguides in 2D periodic structures , 2011, 1111.4578.

[20]  Sonia Fliss,et al.  Exact boundary conditions for periodic waveguides containing a local perturbation , 2006 .

[21]  Sonia Fliss,et al.  Exact boundary conditions for time-harmonic wave propagation in locally perturbed periodic media , 2009 .

[22]  Ben Schweizer,et al.  Outgoing wave conditions in photonic crystals and transmission properties at interfaces , 2015, ESAIM: Mathematical Modelling and Numerical Analysis.

[23]  Steven G. Johnson,et al.  All-angle negative refraction without negative effective index , 2002 .

[24]  Ivo Babuška,et al.  The generalized finite element method for Helmholtz equation: Theory, computation, and open problems , 2006 .

[25]  Frank Schmidt,et al.  Solving Time-Harmonic Scattering Problems Based on the Pole Condition II: Convergence of the PML Method , 2003, SIAM J. Math. Anal..

[26]  Sonia Fliss,et al.  Wave propagation in locally perturbed periodic media (case with absorption): Numerical aspects , 2012, J. Comput. Phys..

[27]  Steven G. Johnson,et al.  Photonic Crystals: Molding the Flow of Light , 1995 .

[28]  Guy Bouchitté,et al.  Negative refraction in periodic and random photonic crystals , 2005 .

[29]  Frank Schmidt,et al.  Solving Time-Harmonic Scattering Problems Based on the Pole Condition I: Theory , 2003, SIAM J. Math. Anal..

[30]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[31]  Ben Schweizer,et al.  Effective Maxwell Equations in a Geometry with Flat Rings of Arbitrary Shape , 2013, SIAM J. Math. Anal..

[32]  Vu Hoang,et al.  The Limiting Absorption Principle for a Periodic Semi-Infinite Waveguide , 2011, SIAM J. Appl. Math..