Polymer degradation and in vitro release of a model protein from poly(D,L-lactide-co-glycolide) nano- and microparticles.

The objective of the study was to investigate the effect of particle size of nano- and microparticles formulated from poly(D,L-lactide-co-glycolide) (50:50 PLGA) on polymer degradation and protein release. Since the surface area to volume ratio is inversely proportional to the particle size, it is hypothesized that the particle size would influence the polymer degradation as well as the release of the encapsulated protein. PLGA nano- and microparticles of approximate mean diameters of 0.1, 1 and 10 microm, containing bovine serum albumin as a model protein, were formulated using a multiple water-in-oil-in-water emulsion solvent evaporation technique. These particles were incubated at 37 degrees C in phosphate-buffered saline (pH 7.4, 154 mM) and the particles were characterized at various time points for molecular weight of polymer, surface-associated polyvinyl alcohol content (PVA), and the particle surface topology using scanning electron microscopy. The supernatants from the above study were analyzed for the released protein and PVA content. Polymer degradation was found to be biphasic in both nano- and microparticles, with an initial rapid degradation for 20-30 days followed by a slower degradation phase. The 0.1 microm diameter nanoparticles demonstrated relatively higher polymer degradation rate (P<0.05) during the initial phase as compared to the larger size microparticles (first order degradation rate constants of 0.028 day(-1), 0.011 day(-1) and 0.018 day(-1) for 0.1, 1 and 10 microm particles, respectively), however the degradation rates were almost similar (0.008 to 0.009 day(-1)) for all size particles during the later phase. All size particles maintained their structural integrity during the initial degradation phase; however, this was followed by pore formation, deformation and fusion of particles during the slow degradation phase. Protein release from 0.1 and 1 microm particles was greater than that from 10 microm size particles. In conclusion, the polymer degradation rates in vitro were not substantially different for different size particles despite a 10- and 100-fold greater surface area to volume ratio for 0.1 microm size nanoparticles as compared to 1 and 10 microm size microparticles, respectively. Relatively higher amounts of the surface-associated PVA found in the smaller-size nanoparticles (0.1 microm) as compared to the larger-size microparticles could explain some of the observed degradation results with different size particles.

[1]  S. Schwendeman,et al.  Stabilization of proteins encapsulated in injectable poly (lactide-co-glycolide) , 2000, Nature Biotechnology.

[2]  Steven P Schwendeman,et al.  Recent advances in the stabilization of proteins encapsulated in injectable PLGA delivery systems. , 2002, Critical reviews in therapeutic drug carrier systems.

[3]  Suming Li,et al.  Hydrolytic degradation of devices based on poly(DL-lactic acid) size-dependence. , 1995, Biomaterials.

[4]  M Dunne,et al.  Influence of particle size and dissolution conditions on the degradation properties of polylactide-co-glycolide particles. , 2000, Biomaterials.

[5]  Jayanth Panyam,et al.  Rapid endo‐lysosomal escape of poly(DL‐lactide‐coglycolide) nanoparticles: implications for drug and gene delivery , 2002, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[6]  Gordon L. Amidon,et al.  The Mechanism of Uptake of Biodegradable Microparticles in Caco-2 Cells Is Size Dependent , 1997, Pharmaceutical Research.

[7]  T. Park,et al.  Protein delivery from poly(lactic-co-glycolic acid) biodegradable microspheres: release kinetics and stability issues. , 1998, Journal of microencapsulation.

[8]  M. Shive,et al.  Biodegradation and biocompatibility of PLA and PLGA microspheres , 1997 .

[9]  C Vigneron,et al.  Influence of experimental parameters on the characteristics of poly(lactic acid) nanoparticles prepared by a double emulsion method. , 1998, Journal of controlled release : official journal of the Controlled Release Society.

[10]  Wim E. Hennink,et al.  Protein Instability in Poly(Lactic-co-Glycolic Acid) Microparticles , 2000, Pharmaceutical Research.

[11]  Y. Yamaguchi,et al.  A novel sustained-release formulation of insulin with dramatic reduction in initial rapid release. , 2002, Journal of controlled release : official journal of the Controlled Release Society.

[12]  Yamaguchi Hiroshi,et al.  Swelling and mechanical properties of poly(vinyl alcohol) hydrogels , 1990 .

[13]  A. Lele,et al.  Morphological changes in degrading PLGA and P(DL)LA microspheres: implications for the design of controlled release systems. , 2001, Journal of microencapsulation.

[14]  Jagdish Singh,et al.  Assessment of protein release kinetics, stability and protein polymer interaction of lysozyme encapsulated poly(D,L-lactide-co-glycolide) microspheres. , 2002, Journal of controlled release : official journal of the Controlled Release Society.

[15]  Jayanth Panyam,et al.  Biodegradable nanoparticles for drug and gene delivery to cells and tissue. , 2003, Advanced drug delivery reviews.

[16]  J. Pedraz,et al.  Influence of formulation variables on the in-vitro release of albumin from biodegradable microparticulate systems. , 1997, Journal of microencapsulation.

[17]  A. Coombes,et al.  The control of protein release from poly(DL-lactide co-glycolide) microparticles by variation of the external aqueous phase surfactant in the water-in oil-in water method. , 1998, Journal of controlled release : official journal of the Controlled Release Society.

[18]  M A Tracy,et al.  Factors affecting the degradation rate of poly(lactide-co-glycolide) microspheres in vivo and in vitro. , 1999, Biomaterials.

[19]  P. Weston,et al.  Effect of protein molecular weight on release from micron-sized PLGA microspheres. , 2001, Journal of controlled release : official journal of the Controlled Release Society.

[20]  S. Sahoo,et al.  Residual polyvinyl alcohol associated with poly (D,L-lactide-co-glycolide) nanoparticles affects their physical properties and cellular uptake. , 2002, Journal of controlled release : official journal of the Controlled Release Society.

[21]  Yi Yan Yang,et al.  Morphology, drug distribution, and in vitro release profiles of biodegradable polymeric microspheres containing protein fabricated by double-emulsion solvent extraction/evaporation method. , 2001, Biomaterials.

[22]  Gordon L. Amidon,et al.  Gastrointestinal Uptake of Biodegradable Microparticles: Effect of Particle Size , 1996, Pharmaceutical Research.

[23]  V. Labhasetwar,et al.  Size-dependency of nanoparticle-mediated gene transfection: studies with fractionated nanoparticles. , 2002, International journal of pharmaceutics.