Elongator, a multisubunit component of a novel RNA polymerase II holoenzyme for transcriptional elongation.

[1]  G. Evan,et al.  Synthesis of peptides for use as immunogens. , 1998, Methods in molecular biology.

[2]  S. Carr,et al.  Examination of micro-tip reversed-phase liquid chromatographic extraction of peptide pools for mass spectrometric analysis. , 1998, Journal of chromatography. A.

[3]  Steven A. Brown,et al.  Transcriptional activation domains stimulate initiation and elongation at different times and via different residues , 1998, The EMBO journal.

[4]  F. Winston,et al.  Evidence that Spt4, Spt5, and Spt6 control transcription elongation by RNA polymerase II in Saccharomyces cerevisiae. , 1998, Genes & development.

[5]  K. Yano,et al.  DSIF, a novel transcription elongation factor that regulates RNA polymerase II processivity, is composed of human Spt4 and Spt5 homologs. , 1998, Genes & development.

[6]  G. Orphanides,et al.  FACT, a Factor that Facilitates Transcript Elongation through Nucleosomes , 1998, Cell.

[7]  D. Bushnell,et al.  The Med proteins of yeast and their function through the RNA polymerase II carboxy-terminal domain. , 1998, Genes & development.

[8]  S. Chávez,et al.  The yeast HPR1 gene has a functional role in transcriptional elongation that uncovers a novel source of genome instability. , 1997, Genes & development.

[9]  M. Roth,et al.  Transcription units as RNA processing units. , 1997, Genes & development.

[10]  A. Gnatt,et al.  Formation and Crystallization of Yeast RNA Polymerase II Elongation Complexes* , 1997, The Journal of Biological Chemistry.

[11]  A. Gnatt,et al.  Evidence for a mediator cycle at the initiation of transcription. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[12]  M. Tokunaga,et al.  Characterization of IKI1 and IKI3 genes conferring pGKL killer sensitivity on Saccharomyces cerevisiae. , 1997, Bioscience, biotechnology, and biochemistry.

[13]  H. Erdjument-Bromage,et al.  Methodical analysis of protein-nitrocellulose interactions to design a refined digestion protocol. , 1996, Analytical biochemistry.

[14]  Young-Joon Kim,et al.  Mediator of transcriptional regulation. , 1996, Trends in biochemical sciences.

[15]  R. Conaway,et al.  The RNA polymerase II general elongation factors. , 1996, Trends in biochemical sciences.

[16]  R. Roeder,et al.  The role of general initiation factors in transcription by RNA polymerase II. , 1996, Trends in biochemical sciences.

[17]  M. Dahmus Reversible Phosphorylation of the C-terminal Domain of RNA Polymerase II* , 1996, The Journal of Biological Chemistry.

[18]  D. Bentley,et al.  TFIIH functions in regulating transcriptional elongation by RNA polymerase II in Xenopus oocytes , 1996, Molecular and cellular biology.

[19]  J. Greenblatt,et al.  Three functional classes of transcriptional activation domain , 1996, Molecular and cellular biology.

[20]  A. Shilatifard,et al.  An RNA Polymerase II Elongation Factor Encoded by the Human ELL Gene , 1996, Science.

[21]  D. Reines,et al.  Mutations in the Second Largest Subunit of RNA Polymerase II Cause 6-Azauracil Sensitivity in Yeast and Increased Transcriptional Arrest in Vitro(*) , 1996, The Journal of Biological Chemistry.

[22]  H. Ruis,et al.  Stress signaling in yeast , 1995, BioEssays : news and reviews in molecular, cellular and developmental biology.

[23]  D. Price,et al.  Purification of P-TEFb, a Transcription Factor Required for the Transition into Productive Elongation (*) , 1995, The Journal of Biological Chemistry.

[24]  R. Young,et al.  General requirement for RNA polymerase II holoenzymes in vivo. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[25]  C. Thompson,et al.  Association of an activator with an RNA polymerase II holoenzyme. , 1995, Genes & development.

[26]  R. S. Muir,et al.  Gene disruption with PCR products in Saccharomyces cerevisiae. , 1995, Gene.

[27]  R. Kornberg,et al.  RNA polymerase transcription factor IIH holoenzyme from yeast. , 1994, The Journal of biological chemistry.

[28]  R. Kornberg,et al.  Isolation of the yeast histone octamer. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[29]  M. Dahmus,et al.  Purification and characterization of a phosphatase from HeLa cells which dephosphorylates the C-terminal domain of RNA polymerase II. , 1994, The Journal of biological chemistry.

[30]  J. Lis,et al.  Phosphorylation of RNA polymerase II C-terminal domain and transcriptional elongation , 1994, Nature.

[31]  D. Bentley,et al.  Transcriptional elongation by RNA polymerase II is stimulated by transactivators , 1994, Cell.

[32]  Yang Li,et al.  A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II , 1994, Cell.

[33]  F. Rubio,et al.  The protein phosphatase calcineurin is essential for NaCl tolerance of Saccharomyces cerevisiae. , 1994, The Journal of biological chemistry.

[34]  R. Kornberg,et al.  Interplay of positive and negative effectors in function of the C-terminal repeat domain of RNA polymerase II. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[35]  R. Conaway,et al.  RNA polymerase II transcription factor SIII. I. Identification, purification, and properties. , 1993, The Journal of biological chemistry.

[36]  David M. Chao,et al.  A multisubunit complex associated with the RNA polymerase II CTD and TATA-binding protein in yeast , 1993, Cell.

[37]  P. Højrup,et al.  Use of mass spectrometric molecular weight information to identify proteins in sequence databases. , 1993, Biological mass spectrometry.

[38]  R. Kornberg,et al.  Reconstitution of transcription with five purified initiation factors and RNA polymerase II from Saccharomyces cerevisiae. , 1992, The Journal of biological chemistry.

[39]  R. Kornberg,et al.  Purification and properties of Saccharomyces cerevisiae RNA polymerase II general initiation factor a. , 1992, The Journal of biological chemistry.

[40]  J. Archambault,et al.  Genetic interaction between transcription elongation factor TFIIS and RNA polymerase II , 1992, Molecular and cellular biology.

[41]  J. Chesnut,et al.  The interaction of RNA polymerase II with the adenovirus-2 major late promoter is precluded by phosphorylation of the C-terminal domain of subunit IIa. , 1992, The Journal of biological chemistry.

[42]  G. Evan,et al.  Synthesis of peptides for use as immunogens. , 1992, Methods in molecular biology.

[43]  R. Kornberg,et al.  CTD kinase associated with yeast RNA polymerase II initiation factor b , 1991, Cell.

[44]  A. Rodríguez-Navarro,et al.  A novel P‐type ATPase from yeast involved in sodium transport , 1991, FEBS letters.

[45]  F. Sherman Getting started with yeast. , 1991, Methods in enzymology.

[46]  P. Laybourn,et al.  Phosphorylation of RNA polymerase IIA occurs subsequent to interaction with the promoter and before the initiation of transcription. , 1990, The Journal of biological chemistry.

[47]  R. J. Kelleher,et al.  Resolution of factors required for the initiation of transcription by yeast RNA polymerase II. , 1990, The Journal of biological chemistry.

[48]  N. Thompson,et al.  Purification of eukaryotic RNA polymerase II by immunoaffinity chromatography. Elution of active enzyme with protein stabilizing agents from a polyol-responsive monoclonal antibody. , 1990, The Journal of biological chemistry.

[49]  R. Young,et al.  Intragenic and extragenic suppressors of mutations in the heptapeptide repeat domain of Saccharomyces cerevisiae RNA polymerase II. , 1989, Genetics.

[50]  P. Laybourn,et al.  The transition of RNA polymerase II from initiation to elongation is associated with phosphorylation of the carboxyl-terminal domain of subunit IIa. , 1989, The Journal of biological chemistry.

[51]  M. Tokunaga,et al.  Expression of pGKL killer 28K subunit in Saccharomyces cerevisiae: identification of 28K subunit as a killer protein. , 1989, Nucleic acids research.

[52]  R. Sikorski,et al.  A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. , 1989, Genetics.

[53]  A. Sluder,et al.  Dynamic interaction between a Drosophila transcription factor and RNA polymerase II , 1989, Molecular and cellular biology.

[54]  Rodney Rothstein,et al.  Elevated recombination rates in transcriptionally active DNA , 1989, Cell.

[55]  M. Grunstein,et al.  Depletion of histone H4 and nucleosomes activates the PHO5 gene in Saccharomyces cerevisiae. , 1988, The EMBO journal.

[56]  M. Dahmus,et al.  Messenger RNA synthesis in mammalian cells is catalyzed by the phosphorylated form of RNA polymerase II. , 1987, The Journal of biological chemistry.

[57]  J. Hubert,et al.  Complete sequence of a eukaryotic regulatory gene. , 1983, The EMBO journal.

[58]  N. Kobayashi,et al.  Purification of a factor from Ehrlich ascites tumor cells specifically stimulating RNA polymerase II. , 1976, Biochemistry.

[59]  T. Franklin,et al.  The inhibition of nucleic acid synthesis by mycophenolic acid. , 1969, The Biochemical journal.