A new and intuitive test for zero modification

Abstract: While there do exist several statistical tests for detecting zero modification in count data regression models, these rely on asymptotical results and do not transparently distinguish between zero inflation and zero deflation. In this manuscript, a novel non-asymptotic test is introduced which makes direct use of the fact that the distribution of the number of zeros under the null hypothesis of no zero modification can be described by a Poisson-binomial distribution. The computation of critical values from this distribution requires estimation of the mean parameter under the null hypothesis, for which a hybrid estimator involving a zero-truncated mean estimator is proposed. Power and nominal level attainment rates of the new test are studied, which turn out to be very competitive to those of the likelihood ratio test. Illustrative data examples are provided.

[1]  Author D. R. Cox Further Results on Tests of Separate Families of Hypotheses , 2017 .

[2]  R. L. Plackett,et al.  The Truncated Poisson Distribution , 1953 .

[3]  Jochen Einbeck,et al.  Zero‐inflated regression models for radiation‐induced chromosome aberration data: A comparative study , 2016, Biometrical journal. Biometrische Zeitschrift.

[4]  Dankmar Böhning,et al.  On estimation of the Poisson parameter in zero-modified Poisson models , 2000 .

[5]  Marc G. Genton,et al.  Asymptotic properties of sample quantiles of discrete distributions , 2011 .

[6]  J. Einbeck,et al.  Sample quantiles corresponding to mid p-values for zero-modification tests. , 2017 .

[7]  T. Yee The VGAM Package for Categorical Data Analysis , 2010 .

[8]  Yili Hong,et al.  On computing the distribution function for the Poisson binomial distribution , 2013, Comput. Stat. Data Anal..

[9]  Jun S. Liu,et al.  STATISTICAL APPLICATIONS OF THE POISSON-BINOMIAL AND CONDITIONAL BERNOULLI DISTRIBUTIONS , 1997 .

[10]  G. Molenberghs,et al.  Likelihood Ratio, Score, and Wald Tests in a Constrained Parameter Space , 2007 .

[11]  Beatrijs Moerkerke,et al.  The analysis of zero-inflated count data: beyond zero-inflated Poisson regression. , 2012, The British journal of mathematical and statistical psychology.

[12]  J. A. Marín,et al.  Micropropagation of columnar apple trees , 1993 .

[13]  Martin Schatzoff,et al.  Expected Significance Level as a Sensitivity Index for Test Statistics , 1965 .

[14]  A. Heimers,et al.  Chromosome aberration analysis and the influence of mitotic delay after simulated partial-body exposure with high doses of sparsely and densely ionising radiation , 2006, Radiation and environmental biophysics.

[15]  John Hinde,et al.  Models for count data with many zeros , 1998 .

[16]  Rocco A. Servedio,et al.  Learning Poisson Binomial Distributions , 2011, STOC '12.

[17]  J. O. Irwin,et al.  138. Note: On the Estimation of the Mean of a Poisson Distribution from a Sample with the Zero Class Missing , 1959 .

[18]  W. Franck P-values For Discrete Test Statistics , 1986 .

[19]  Q. Vuong Likelihood Ratio Tests for Model Selection and Non-Nested Hypotheses , 1989 .

[20]  M. Stone,et al.  The role of significance testing: some data with a message , 1969 .

[21]  H. O. Lancaster,et al.  Significance Tests in Discrete Distributions , 1961 .

[22]  Paul Wilson,et al.  The misuse of the Vuong test for non-nested models to test for zero-inflation , 2015 .