Pebbling numbers of some graphs

Chung defined a pebbling move on a graphG as the removal of two pebbles from one vertex and the addition of one pebble to an adjacent vertex. The pebbling number of a connected graphG, f(G), is the leastn such that any distribution ofn pebbles onG allows one pebble to be moved to any specified but arbitrary vertex by a sequence of pebbling moves. Graham conjectured that for any connected graphsG andH, f(G xH) ≤f(G)f(H). In the present paper the pebbling numbers of the product of two fan graphs and the product of two wheel graphs are computed. As a corollary, Graham’s conjecture holds whenG andH are fan graphs or wheel graphs.