New materials for post-Si computing: Ge and GeSn devices
暂无分享,去创建一个
Krishna C. Saraswat | Shinichi Takagi | Xiao Gong | Yee-Chia Yeo | K. Saraswat | Y. Yeo | S. Takagi | Suyog Gupta | X. Gong | Rui Zhang | Suyog Gupta | Rui Zhang
[1] Krishna C. Saraswat,et al. 7-nm FinFET CMOS Design Enabled by Stress Engineering Using Si, Ge, and Sn , 2014, IEEE Transactions on Electron Devices.
[2] M. Takenaka,et al. Impact of Plasma Postoxidation Temperature on the Electrical Properties of ${\rm Al}_{2}{\rm O}_{3}/{\rm GeO}_{x}/{\rm Ge}$ pMOSFETs and nMOSFETs , 2014, IEEE Transactions on Electron Devices.
[3] J. Locquet,et al. Tensile-Strained GeSn Metal–Oxide–Semiconductor Field-Effect Transistor Devices on Si(111) Using Solid Phase Epitaxy , 2013 .
[4] M. Takenaka,et al. Ge gate stacks based on Ge oxide interfacial layers and the impact on MOS device properties , 2013 .
[5] Y. Yeo,et al. Ge0.97Sn0.03 p-channel metal-oxide-semiconductor field-effect transistors: Impact of Si surface passivation layer thickness and post metal annealing , 2013 .
[6] Suyog Gupta,et al. Hole Mobility Enhancement in Compressively Strained ${\rm Ge}_{0.93}{\rm Sn}_{0.07}$ pMOSFETs , 2013, IEEE Electron Device Letters.
[7] (110)-oriented germanium-tin (Ge0.97Sn0.03) P-channel MOSFETs , 2013, 2013 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA).
[8] K. Saraswat,et al. Material characterization of high Sn-content, compressively-strained GeSn epitaxial films after rapid thermal processing , 2013 .
[9] R. Lieten,et al. Tensile strained GeSn on Si by solid phase epitaxy for high mobility FET devices , 2013 .
[10] Rui Zhang,et al. High-Mobility Ge p- and n-MOSFETs With 0.7-nm EOT Using $\hbox{HfO}_{2}/\hbox{Al}_{2}\hbox{O}_{3}/\hbox{GeO}_{x}/\hbox{Ge}$ Gate Stacks Fabricated by Plasma Postoxidation , 2013, IEEE Transactions on Electron Devices.
[11] Y. Yeo,et al. Germanium–Tin (GeSn) p-Channel MOSFETs Fabricated on (100) and (111) Surface Orientations With Sub-400 $^{\circ}\hbox{C}\ \hbox{Si}_{2}\hbox{H}_{6}$ Passivation , 2013, IEEE Electron Device Letters.
[12] P. P. Manik,et al. Fermi-level unpinning and low resistivity in contacts to n-type Ge with a thin ZnO interfacial layer , 2012 .
[13] K. J. Kuhn,et al. Considerations for Ultimate CMOS Scaling , 2012, IEEE Transactions on Electron Devices.
[14] A. Asenov,et al. Hole Mobility in Germanium as a Function of Substrate and Channel Orientation, Strain, Doping, and Temperature , 2012, IEEE Transactions on Electron Devices.
[15] N. Taoka,et al. High-Mobility Ge pMOSFET With 1-nm EOT $\hbox{Al}_{2} \hbox{O}_{3}/\hbox{GeO}_{x}/\hbox{Ge}$ Gate Stack Fabricated by Plasma Post Oxidation , 2012, IEEE Transactions on Electron Devices.
[16] J. Alamo. Nanometre-scale electronics with III–V compound semiconductors , 2011, Nature.
[17] Wilfried Vandervorst,et al. Undoped and in-situ B doped GeSn epitaxial growth on Ge by atmospheric pressure-chemical vapor deposition , 2011 .
[18] Mitsuru Takenaka,et al. Suppression of ALD-Induced Degradation of Ge MOS Interface Properties by Low Power Plasma Nitridation of GeO2 , 2011 .
[19] J. Hartmann,et al. Low temperature boron and phosphorous doped SiGe for recessed and raised sources and drains , 2011 .
[20] Mitsuru Takenaka,et al. Al2O3/GeOx/Ge gate stacks with low interface trap density fabricated by electron cyclotron resonance plasma postoxidation , 2011 .
[21] K. Nagashio,et al. High-Electron-Mobility $\hbox{Ge/GeO}_{2}$ n-MOSFETs With Two-Step Oxidation , 2011, IEEE Transactions on Electron Devices.
[22] K. Saraswat,et al. Increase in current density for metal contacts to n-germanium by inserting TiO2 interfacial layer to reduce Schottky barrier height , 2011 .
[23] N. Taoka,et al. Physical origins of mobility enhancement of Ge p-channel metal-insulator-semiconductor field effect transistors with Si passivation layers , 2010 .
[24] M Takenaka,et al. High-Performance $\hbox{GeO}_{2}/\hbox{Ge}$ nMOSFETs With Source/Drain Junctions Formed by Gas-Phase Doping , 2010, IEEE Electron Device Letters.
[25] K. Saraswat,et al. Specific Contact Resistivity of Tunnel Barrier Contacts Used for Fermi Level Depinning , 2010, IEEE Electron Device Letters.
[26] Mitsuru Takenaka,et al. Surface orientation dependence of interface properties of GeO2/Ge metal-oxide-semiconductor structures fabricated by thermal oxidation , 2009 .
[27] Heiji Watanabe,et al. Origin of flatband voltage shift and unusual minority carrier generation in thermally grown GeO2/Ge metal-oxide-semiconductor devices , 2009 .
[28] Mitsuru Takenaka,et al. Evidence of low interface trap density in GeO2∕Ge metal-oxide-semiconductor structures fabricated by thermal oxidation , 2008 .
[29] A. Toriumi,et al. A Significant Shift of Schottky Barrier Heights at Strongly Pinned Metal/Germanium Interface by Inserting an Ultra-Thin Insulating Film , 2008 .
[30] Tomonori Nishimura,et al. Direct Evidence of GeO Volatilization from GeO2/Ge and Impact of Its Suppression on GeO2/Ge Metal–Insulator–Semiconductor Characteristics , 2008 .
[31] Shinichi Takagi,et al. Effects of Si passivation on Ge metal-insulator-semiconductor interface properties and inversion-layer hole mobility , 2008 .
[32] M. Kuijk,et al. Ohmic contact formation on n-type Ge , 2008 .
[33] Heiji Watanabe,et al. Characteristics of Pure Ge3N4 Dielectric Layers Formed by High-Density Plasma Nitridation , 2008 .
[34] Shinichi Takagi,et al. Gate dielectric formation and MIS interface characterization on Ge , 2007 .
[35] Marc Heyns,et al. Effective electrical passivation of Ge(100) for high-k gate dielectric layers using germanium oxide , 2007 .
[36] Daniel J. Connelly,et al. Fermi-level depinning for low-barrier Schottky source/drain transistors , 2006 .
[37] Satoshi Hashimoto,et al. Electrical Characterization of Germanium Oxide/Germanium Interface Prepared by Electron-Cyclotron-Resonance Plasma Irradiation , 2005 .
[38] Marc Heyns,et al. Optimisation of a thin epitaxial Si layer as Ge passivation layer to demonstrate deep sub-micron n- and p-FETs on Ge-On-Insulator substrates , 2005 .
[39] Albert Chin,et al. Alternative surface passivation on germanium for metal-oxide-semiconductor applications with high-k gate dielectric , 2004 .
[40] S. Takagi,et al. Ge metal-insulator-semiconductor structures with Ge3N4 dielectrics by direct nitridation of Ge substrates , 2004 .
[41] Krishna C. Saraswat,et al. Local epitaxial growth of ZrO2 on Ge (100) substrates by atomic layer epitaxy , 2003 .
[42] Stefan Zollner,et al. Ge–Sn semiconductors for band-gap and lattice engineering , 2002 .
[43] M. S. Carroll,et al. Low‐Temperature Preparation of Oxygen‐ and Carbon‐Free Silicon and Silicon‐Germanium Surfaces for Silicon and Silicon‐Germanium Epitaxial Growth by Rapid Thermal Chemical Vapor Deposition , 2000 .
[44] C. Hu,et al. FinFET-a self-aligned double-gate MOSFET scalable to 20 nm , 2000 .
[45] Low temperature epitaxy of Si and Si1−xGex by utrahigh vacuum-chemical molecular epitaxy , 1997 .
[46] S. Jang,et al. Chemical Vapor Deposition of Epitaxial Silicon‐Germanium from Silane and Germane II . In Situ Boron, Arsenic, and Phosphorus Doping , 1995 .