Tailored polymer-based nanorods and nanotubes by "template synthesis": From preparation to applications

Polymer nanotechnology allows manipulating materials microstructure, morphology and compositional variation on the nanometer scale. Thus, it is able to provide materials for many cutting edge applications, from photonics to medical devices to sensors. This article summarizes recent work on template-based fabrication and on the basic properties of one-dimensional polymeric nanostructures and their inherent advantages over their conventional counterparts. The chemistry and physics relevant for the design of these nanostructured materials are discussed and recent advances emphasized. In particular, highlighting the effects of nanoconfinement on material behavior and putting somewhat greater emphasis on molecular motions. Some examples of one-dimensional-based polymeric nanostructures with promising applications for example in the field of tissue engineering are also presented as well as some aspects concerning recyclability of the used templates.

[1]  C. R. Martin,et al.  Electronically conductive polymer fibers with mesoscopic diameters show enhanced electronic conductivities , 1989 .

[2]  A. Nogales,et al.  Segmental Dynamics of Semicrystalline Poly(vinylidene fluoride) Nanorods , 2009 .

[3]  B. Blümich,et al.  Surface induced order and dynamic heterogeneity in ultra thin polymer films: A 1H multiple-quantum NMR study , 2004 .

[4]  C. R. Martin,et al.  Molecular and supermolecular origins of enhanced electric conductivity in template-synthesized polyheterocyclic fibrils. 1. Supermolecular effects , 1991 .

[5]  Andreas Langner,et al.  Nondestructive replication of self-ordered nanoporous alumina membranes via cross-linked polyacrylate nanofiber arrays. , 2008, Nano letters.

[6]  J. Wendorff,et al.  Cylindrical Polymer Nanostructures by Solution Template Wetting , 2008 .

[7]  M. Steinhart,et al.  Palladium Nanotubes with Tailored Wall Morphologies , 2003 .

[8]  P. Théato,et al.  Template-assisted fabrication of free-standing nanorod arrays of a hole-conducting cross-linked triphenylamine derivative: toward ordered bulk-heterojunction solar cells. , 2009, ACS nano.

[9]  W. Knoll,et al.  Poly(γ-benzyl-l-glutamate) Peptides Confined to Nanoporous Alumina: Pore Diameter Dependence of Self-Assembly and Segmental Dynamics , 2009 .

[10]  C. Mijangos,et al.  Probing the presence and distribution of single-wall carbon nanotubes in polyvinylidene difluoride 1D nanocomposites by confocal Raman spectroscopy , 2010 .

[11]  J. Huh,et al.  From homogeneous to heterogeneous nucleation of chain molecules under nanoscopic cylindrical confinement. , 2007, Physical review letters.

[12]  K. Neoh,et al.  Hollow polymeric nanostructures—Synthesis, morphology and function , 2011 .

[13]  C. R. Martin,et al.  Preparation of Polymeric Micro- and Nanostructures Using a Template-Based Deposition Method , 1999 .

[14]  S. Agarwal,et al.  Polymer Tubes with Longitudinal Composition Gradient by Face-to-Face Wetting† , 2008 .

[15]  Weiqi Wang,et al.  Crystallization and orientation of syndiotactic polystyrene in nanorods , 2007 .

[16]  A. Albertsson,et al.  Advances in Polymer Science , 2011 .

[17]  I. M. Kalogeras Contradicting perturbations of the segmental and secondary relaxation dynamics of polymer strands constrained in nanopores , 2005 .

[18]  C. Schick,et al.  Glassy dynamics of polymers confined to nanoporous glasses revealed by relaxational and scattering experiments , 2003, The European physical journal. E, Soft matter.

[19]  Yu Ma,et al.  Understanding crystal orientation in quasi-one-dimensional polymer systems. , 2008, Soft matter.

[20]  M. Steinhart,et al.  Liquid crystalline nanowires in porous alumina: geometric confinement versus influence of pore walls. , 2005, Nano letters.

[21]  Società italiana di fisica,et al.  The European physical journal. E, Soft matter , 2000 .

[22]  Martin Steinhart,et al.  Nanotubes by template wetting: a modular assembly system. , 2004, Angewandte Chemie.

[23]  Charles R. Martin,et al.  Template Synthesis of Electronically Conductive Polymer Nanostructures , 1995 .

[24]  H. Sasabe,et al.  Dielectric relaxations in poly(vinylidene fluoride) , 1969 .

[25]  C. Mijangos,et al.  Monitoring the Thermal Elimination of Infiltrated Polymer from AAO Templates: An Exhaustive Characterization after Polymer Extraction , 2011 .

[26]  A. Birner,et al.  Fabrication and Microstructuring of Hexagonally Ordered Two‐Dimensional Nanopore Arrays in Anodic Alumina , 1999 .

[27]  Charles R. Martin,et al.  Nanomaterials: A Membrane-Based Synthetic Approach , 1994, Science.

[28]  G. Vancso,et al.  Ordered Polymeric Nanostructures at Surfaces , 2006 .

[29]  Kwang-woo Kim,et al.  Crystalline Structures, Melting, and Crystallization of Linear Polyethylene in Cylindrical Nanopores , 2007 .

[30]  C. R. Martin,et al.  Controlling the Morphology of Electronically Conductive Polymers , 1986 .

[31]  On the dynamics and disentanglement in thin and two-dimensional polymer films , 2006, cond-mat/0609127.

[32]  M. Steinhart,et al.  Coherent kinetic control over crystal orientation in macroscopic ensembles of polymer nanorods and nanotubes. , 2006, Physical review letters.

[33]  T. Russell,et al.  Wetting Transition in Cylindrical Alumina Nanopores with Polymer Melts , 2006 .

[34]  W. Knoll,et al.  Polycyanurate nanorod arrays for optical-waveguide-based biosensing. , 2010, Nano letters.

[35]  Reinald Hillebrand,et al.  Self-ordered anodic aluminum oxide formed by H2SO4 hard anodization. , 2008, ACS nano.

[36]  A. Keller,et al.  Role of mobile phases in the crystallization of polyethylene. Part 1. Metastability and lateral growth , 1991 .

[37]  Jin-Kyu Lee,et al.  Non‐lithographic Approach to the Fabrication of Polymeric Nanostructures with a Close‐Packed 2D Hexagonal Array , 2002 .

[38]  S. Edwards,et al.  The Theory of Polymer Dynamics , 1986 .

[39]  C. Mijangos,et al.  Tailored polymer-based nanofibers and nanotubes by means of different infiltration methods into alumina nanopores. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[40]  A. Ryan,et al.  Polymer crystallization confined in one, two, or three dimensions , 2001 .

[41]  T. Russell,et al.  Curving and Frustrating Flatland , 2004, Science.

[42]  M. Beiner Nanoconfinement as a tool to study early stages of polymer crystallization , 2008 .

[43]  G. J. Schneider,et al.  Neutron scattering study of the dynamics of a polymer melt under nanoscopic confinement. , 2009, The Journal of chemical physics.

[44]  K. Akagi,et al.  One-dimensional transport in polymer nanofibers. , 2004, Physical review letters.

[45]  T. Russell,et al.  Dewetting on Curved Interfaces: A Simple Route to Polymer Nanostructures , 2011 .

[46]  Ravinath Kausik,et al.  Cooperative polymer dynamics under nanoscopic pore confinements probed by field-cycling NMR relaxometry. , 2007, The Journal of chemical physics.

[47]  Z. Su,et al.  Orientation of syndiotactic polystyrene crystallized in cylindrical nanopores. , 2009, Macromolecular rapid communications.

[48]  Zhijun Hu,et al.  Regular arrays of highly ordered ferroelectric polymer nanostructures for non-volatile low-voltage memories. , 2009, Nature materials.

[49]  Yuwon Lee,et al.  Fabrication of Hierarchical Structures on a Polymer Surface to Mimic Natural Superhydrophobic Surfaces , 2007 .

[50]  D Richter,et al.  Direct observation of confined single chain dynamics by neutron scattering. , 2010, Physical review letters.

[51]  M. Steinhart,et al.  Nondestructive mechanical release of ordered polymer microfiber arrays from porous templates. , 2007, Small.

[52]  H. Brown,et al.  Chain entanglement in thin freestanding polymer films. , 2005, Physical review letters.

[53]  M. Steinhart,et al.  Nanotubes à la carte: wetting of porous templates. , 2003, Chemphyschem : a European journal of chemical physics and physical chemistry.

[54]  M. Kotaki,et al.  A review on polymer nanofibers by electrospinning and their applications in nanocomposites , 2003 .

[55]  M. Fernández-Gutiérrez,et al.  Cellular interactions of biodegradable nanorod arrays prepared by nondestructive extraction from nanoporous alumina , 2010 .

[56]  C. Han,et al.  Dynamics of polymer melts confined by smooth walls: crossover from nonentangled region to entangled region. , 2007, The Journal of chemical physics.

[57]  Kwangsok Kim,et al.  Structure and process relationship of electrospun bioabsorbable nanofiber membranes , 2002 .

[58]  M. Steinhart,et al.  Curvature-Directed Crystallization of Poly(vinylidene difluoride) in Nanotube Walls , 2003 .

[59]  T. J. McCarthy,et al.  Template synthesis and self-assembly of nanoscopic polymer "pencils" , 2003 .

[60]  Charles R. Martin,et al.  Template synthesis of polymeric and metal microtubules , 1991 .

[61]  Chumin Wang,et al.  Light transmission in quasiperiodic multilayers of porous silicon , 2003 .

[62]  M. Vázquez,et al.  One-dimensional magnetopolymeric nanostructures with tailored sizes , 2008, Nanotechnology.

[63]  A. Greiner,et al.  Polymer Nanotubes by Wetting of Ordered Porous Templates , 2002, Science.

[64]  Sachiko Ono,et al.  Self‐Ordering of Cell Arrangement of Anodic Porous Alumina Formed in Sulfuric Acid Solution , 1997 .

[65]  Mikio Konno,et al.  A composite palladium and porous aluminum oxide membrane for hydrogen gas separation , 1988 .

[66]  Y. Berdichevsky,et al.  Polypyrrole Nanowire Actuators , 2006 .

[67]  Kenji Fukuda,et al.  Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina , 1995, Science.

[68]  C. R. Martin,et al.  Membrane-Based Synthesis of Nanomaterials , 1996 .

[69]  C. Mijangos,et al.  Selective Surface Modification of PVC Films As Revealed by Confocal Raman Microspectroscopy , 2000 .

[70]  Kornelius Nielsch,et al.  Fast fabrication of long-range ordered porous alumina membranes by hard anodization , 2006, Nature materials.

[71]  V. Balsamo,et al.  Nucleation and crystallization in diblock and triblock copolymers , 2005 .

[72]  Stephen Z. D. Cheng,et al.  The role of metastability in polymer phase transitions , 1998 .

[73]  Zhaoxia Jin,et al.  Fabrication of Polymer Nanospheres Based on Rayleigh Instability in Capillary Channels , 2011 .

[74]  Eduard Arzt,et al.  Gecko‐Inspired Surfaces: A Path to Strong and Reversible Dry Adhesives , 2010, Advanced materials.

[75]  A. Keller A note on single crystals in polymers: Evidence for a folded chain configuration , 1957 .

[76]  L. Interrante,et al.  Chemistry of Materials Turns Twenty-One , 2009 .

[77]  Kornelius Nielsch,et al.  Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina , 1998 .

[78]  T. Russell,et al.  Confinement Effects on Crystallization and Curie Transitions of Poly(vinylidene fluoride-co-trifluoroethylene) , 2010 .

[79]  Robert M. Metzger,et al.  On the Growth of Highly Ordered Pores in Anodized Aluminum Oxide , 1998 .

[80]  Y. Hwang,et al.  Enhanced mobility of confined polymers. , 2007, Nature materials.

[81]  Reiner Zorn,et al.  Inelastic neutron scattering for investigating the dynamics of confined glass-forming liquids , 2005 .

[82]  H. Butt,et al.  From heterogeneous to homogeneous nucleation of isotactic poly(propylene) confined to nanoporous alumina. , 2011, Nano letters.

[83]  Gregory N. Toepperwein,et al.  Entanglement network in nanoparticle reinforced polymers. , 2009, The Journal of chemical physics.

[84]  A. Faraone,et al.  Chain Dynamics and Viscoelastic Properties of Poly(ethylene oxide) , 2008 .

[85]  M. García-Gutiérrez,et al.  Confinement-induced one-dimensional ferroelectric polymer arrays. , 2010, Nano letters.

[86]  J. Wendorff,et al.  Functional Self-Assembled Nanofibers by Electrospinning , 2008 .

[87]  Stephen Z. D. Cheng,et al.  Hard and soft confinement effects on polymer crystallization in microphase separated cylinder-forming PEO-b-PS/PS blends , 2001 .

[88]  J. Shaffer Dynamics of Confined Polymer Melts: Topology and Entanglement , 1996 .

[89]  V. Balsamo,et al.  Homogeneous nucleation and fractionated crystallization in block copolymers , 2002 .

[90]  K. Nishio,et al.  Highly ordered anodic porous alumina with 13-nm hole intervals using a 2D array of monodisperse nanoparticles as a template. , 2006, Small.

[91]  F. Keller,et al.  Structural Features of Oxide Coatings on Aluminum , 1953 .

[92]  T. Russell,et al.  Instabilities in nanoporous media. , 2007, Nano letters.

[93]  C. R. Martin,et al.  Template synthesis of electronically conductive polymers - A new route for achieving higher electronic conductivities , 1993 .