Small-Variance Asymptotics for Exponential Family Dirichlet Process Mixture Models
暂无分享,去创建一个
[1] J. F. C. Kingman,et al. Information and Exponential Families in Statistical Theory , 1980 .
[2] Sam T. Roweis,et al. EM Algorithms for PCA and SPCA , 1997, NIPS.
[3] Michael E. Tipping,et al. Probabilistic Principal Component Analysis , 1999 .
[4] Manfred K. Warmuth,et al. Relative Expected Instantaneous Loss Bounds , 2000, J. Comput. Syst. Sci..
[5] Radford M. Neal. Markov Chain Sampling Methods for Dirichlet Process Mixture Models , 2000 .
[6] Michael I. Jordan,et al. Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..
[7] Pietro Perona,et al. A Bayesian hierarchical model for learning natural scene categories , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).
[8] Inderjit S. Dhillon,et al. Clustering with Bregman Divergences , 2005, J. Mach. Learn. Res..
[9] Michael I. Jordan,et al. Hierarchical Dirichlet Processes , 2006 .
[10] Li Fei-Fei,et al. ImageNet: A large-scale hierarchical image database , 2009, CVPR.
[11] Max Welling,et al. Bayesian k-Means as a Maximization-Expectation Algorithm , 2009, Neural Computation.
[12] Hal Daumé,et al. A geometric view of conjugate priors , 2010, Machine Learning.
[13] Francis R. Bach,et al. Online Learning for Latent Dirichlet Allocation , 2010, NIPS.
[14] Chong Wang,et al. Online Variational Inference for the Hierarchical Dirichlet Process , 2011, AISTATS.
[15] Michael I. Jordan,et al. Revisiting k-means: New Algorithms via Bayesian Nonparametrics , 2011, ICML.
[16] O. Barndorff-Nielsen. Information and Exponential Families in Statistical Theory , 1980 .