A Verified Decision Procedure for Pseudo-Boolean Formulas

Pseudo-Boolean formulas consist of constraints of the form ∑i=1 wi · xi k, where xi are propositional literals, wi ∈ Z, k ∈ Z, and arise in planning, scheduling and optimization problems. We describe an efficient and easily verifiable decision procedure for pseudo-Boolean formulas, that is based on encoding PB formulas into the propositional satisfiability problem with the cutting-edge sequential weighted counter encoding. State-of-the-art SAT solvers that emit unsatisfiability proofs are used to solve the resulting instances. The combination of a verified translation to SAT, and certified SAT solvers leads to a verified decision procedure for PB formulas. The verification of the encoding is carried out in the Coq proof assistant.

[1]  Bart Selman,et al.  Planning as Satisfiability , 1992, ECAI.

[2]  Armin Biere Yet another Local Search Solver and Lingeling and Friends Entering the SAT Competition 2014 , 2014 .

[3]  Niklas Sörensson,et al.  Translating Pseudo-Boolean Constraints into SAT , 2006, J. Satisf. Boolean Model. Comput..

[4]  Armin Biere,et al.  Automated Testing and Debugging of SAT and QBF Solvers , 2010, SAT.

[5]  Albert Oliveras,et al.  BDDs for Pseudo-Boolean Constraints - Revisited , 2011, SAT.

[6]  Peter Steinke PBLib – A C + + Toolkit for Encoding Pseudo-Boolean Constraints into CNF , 2014 .

[7]  E. Clarke,et al.  Symbolic model checking using SAT procedures instead of BDDs , 1999, Proceedings 1999 Design Automation Conference (Cat. No. 99CH36361).

[8]  P. Barth A Davis-Putnam based enumeration algorithm for linear pseudo-Boolean optimization , 1995 .

[9]  Thierry Coquand,et al.  The Calculus of Constructions , 1988, Inf. Comput..

[10]  Carsten Sinz,et al.  Towards an Optimal CNF Encoding of Boolean Cardinality Constraints , 2005, CP.

[11]  David E. Muller,et al.  Bounds to Complexities of Networks for Sorting and for Switching , 1975, JACM.

[12]  Steffen Hölldobler,et al.  Solving Periodic Event Scheduling Problems with SAT , 2012, IEA/AIE.

[13]  Tobias Philipp,et al.  A More Compact Translation of Pseudo-Boolean Constraints into CNF Such That Generalized Arc Consistency Is Maintained , 2014, KI.

[14]  Dhiraj K. Pradhan,et al.  NiVER: Non Increasing Variable Elimination Resolution for Preprocessing SAT instances , 2004, SAT.

[15]  Armin Biere,et al.  Effective Preprocessing in SAT Through Variable and Clause Elimination , 2005, SAT.

[16]  Armin Biere,et al.  Inprocessing Rules , 2012, IJCAR.

[17]  Inês Lynce,et al.  Probing-based preprocessing techniques for propositional satisfiability , 2003, Proceedings. 15th IEEE International Conference on Tools with Artificial Intelligence.

[18]  Jussi Rintanen Engineering Efficient Planners with SAT , 2012, ECAI.

[19]  Marijn J. H. Heule,et al.  DRAT-trim: Efficient Checking and Trimming Using Expressive Clausal Proofs , 2014, SAT.

[20]  Armin Biere,et al.  Automated Reencoding of Boolean Formulas , 2012, Haifa Verification Conference.

[21]  Daniel Le Berre,et al.  The Sat4j library, release 2.2 , 2010, J. Satisf. Boolean Model. Comput..

[22]  Albert Oliveras,et al.  Cardinality Networks and Their Applications , 2009, SAT.

[23]  Oliver Kullmann,et al.  On a Generalization of Extended Resolution , 1999, Discret. Appl. Math..

[24]  Armin Biere,et al.  Blocked Clause Elimination , 2010, TACAS.

[25]  Olivier Roussel,et al.  New Encodings of Pseudo-Boolean Constraints into CNF , 2009, SAT.

[26]  Yves Bertot,et al.  Interactive Theorem Proving and Program Development: Coq'Art The Calculus of Inductive Constructions , 2010 .

[27]  Jussi Rintanen,et al.  Compact Representation of Sets of Binary Constraints , 2006, ECAI.

[28]  Steffen Hölldobler,et al.  A Compact Encoding of Pseudo-Boolean Constraints into SAT , 2012, KI.