Using phylogenetically-informed annotation (PIA) to search for light-interacting genes in transcriptomes from non-model organisms

BackgroundTools for high throughput sequencing and de novo assembly make the analysis of transcriptomes (i.e. the suite of genes expressed in a tissue) feasible for almost any organism. Yet a challenge for biologists is that it can be difficult to assign identities to gene sequences, especially from non-model organisms. Phylogenetic analyses are one useful method for assigning identities to these sequences, but such methods tend to be time-consuming because of the need to re-calculate trees for every gene of interest and each time a new data set is analyzed. In response, we employed existing tools for phylogenetic analysis to produce a computationally efficient, tree-based approach for annotating transcriptomes or new genomes that we term Phylogenetically-Informed Annotation (PIA), which places uncharacterized genes into pre-calculated phylogenies of gene families.ResultsWe generated maximum likelihood trees for 109 genes from a Light Interaction Toolkit (LIT), a collection of genes that underlie the function or development of light-interacting structures in metazoans. To do so, we searched protein sequences predicted from 29 fully-sequenced genomes and built trees using tools for phylogenetic analysis in the Osiris package of Galaxy (an open-source workflow management system). Next, to rapidly annotate transcriptomes from organisms that lack sequenced genomes, we repurposed a maximum likelihood-based Evolutionary Placement Algorithm (implemented in RAxML) to place sequences of potential LIT genes on to our pre-calculated gene trees. Finally, we implemented PIA in Galaxy and used it to search for LIT genes in 28 newly-sequenced transcriptomes from the light-interacting tissues of a range of cephalopod mollusks, arthropods, and cubozoan cnidarians. Our new trees for LIT genes are available on the Bitbucket public repository (http://bitbucket.org/osiris_phylogenetics/pia/) and we demonstrate PIA on a publicly-accessible web server (http://galaxy-dev.cnsi.ucsb.edu/pia/).ConclusionsOur new trees for LIT genes will be a valuable resource for researchers studying the evolution of eyes or other light-interacting structures. We also introduce PIA, a high throughput method for using phylogenetic relationships to identify LIT genes in transcriptomes from non-model organisms. With simple modifications, our methods may be used to search for different sets of genes or to annotate data sets from taxa outside of Metazoa.

[1]  T. Lamb,et al.  Dark adaptation and the retinoid cycle of vision , 2004, Progress in Retinal and Eye Research.

[2]  J B Findlay,et al.  Isolation, Cloning, and Characterisation of a trp Homologue from Squid (Loligo forbesi) Photoreceptor Membranes , 1996, Journal of neurochemistry.

[3]  Gordon L. Fain,et al.  Phototransduction and the Evolution of Photoreceptors , 2010, Current Biology.

[4]  J. Phillips,et al.  Biosynthesis of heme in mammals. , 2006, Biochimica et biophysica acta.

[5]  Juan Miguel García-Gómez,et al.  BIOINFORMATICS APPLICATIONS NOTE Sequence analysis Manipulation of FASTQ data with Galaxy , 2005 .

[6]  Manfred Schartl,et al.  Evolution of pigment synthesis pathways by gene and genome duplication in fish , 2007, BMC Evolutionary Biology.

[7]  I. Ziegler,et al.  Genetic Aspects of Ommochrome and Pterin Pigments , 1961 .

[8]  D. Nilsson,et al.  The lens eyes of the box jellyfish Tripedalia cystophora and Chiropsalmus sp. are slow and color-blind , 2007, Journal of Comparative Physiology A.

[9]  D. Nilsson,et al.  Visually guided obstacle avoidance in the box jellyfish Tripedalia cystophora and Chiropsella bronzie , 2007, Journal of Experimental Biology.

[10]  Song Li,et al.  LUCY2: an interactive DNA sequence quality trimming and vector removal tool , 2004, Bioinform..

[11]  Gertraud Burger,et al.  AutoFACT: An Automatic Functional Annotation and Classification Tool , 2005, BMC Bioinformatics.

[12]  Magnus Oskarsson,et al.  Box Jellyfish Use Terrestrial Visual Cues for Navigation , 2011, Current Biology.

[13]  Todd H. Oakley,et al.  Ontogeny of sexual dimorphism via tissue duplication in an ostracod (Crustacea) , 2009, Evolution & development.

[14]  Alexandros Stamatakis,et al.  RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models , 2006, Bioinform..

[15]  Detlev Arendt,et al.  Eye Evolution: The Blurry Beginning , 2008, Current Biology.

[16]  J. Piatigorsky,et al.  J1-crystallins of the cubomedusan jellyfish lens constitute a novel family encoded in at least three intronless genes. , 1993, The Journal of biological chemistry.

[17]  Peter Ekström,et al.  Bilateral symmetric organization of neural elements in the visual system of a coelenterate, Tripedalia cystophora (Cubozoa) , 2005, The Journal of comparative neurology.

[18]  G. Woodward Dragonflies: Behaviour and Ecology of Odonata , 2001 .

[19]  Roger T. Hanlon,et al.  Color blindness and contrast perception in cuttlefish (Sepia officinalis) determined by a visual sensorimotor assay , 2006, Vision Research.

[20]  Tao Wang,et al.  Requirement for an Enzymatic Visual Cycle in Drosophila , 2010, Current Biology.

[21]  Daniel J. Blankenberg,et al.  Galaxy: A Web‐Based Genome Analysis Tool for Experimentalists , 2010, Current protocols in molecular biology.

[22]  S. Pomponi,et al.  The Global Invertebrate Genomics Alliance (GIGA): developing community resources to study diverse invertebrate genomes. , 2013, The Journal of heredity.

[23]  W. Gehring,et al.  New perspectives on eye development and the evolution of eyes and photoreceptors. , 2005, The Journal of heredity.

[24]  Cestmir Vlcek,et al.  Assembly of the cnidarian camera-type eye from vertebrate-like components , 2008, Proceedings of the National Academy of Sciences.

[25]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[26]  Z. Kozmík,et al.  Eye evolution: common use and independent recruitment of genetic components , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[27]  Michael Kube,et al.  Parallel evolution of nacre building gene sets in molluscs. , 2010, Molecular biology and evolution.

[28]  Geoffrey J. Barton,et al.  GOtcha: a new method for prediction of protein function assessed by the annotation of seven genomes , 2004, BMC Bioinformatics.

[29]  K. Katoh,et al.  MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. , 2002, Nucleic acids research.

[30]  Keisuke Takeuchi,et al.  A Genome-Wide Survey of Genes for Enzymes Involved in Pigment Synthesis in an Ascidian, Ciona intestinalis , 2005, Zoological science.

[31]  Z. Kozmík,et al.  Structure and expression of the scallop Omega-crystallin gene. Evidence for convergent evolution of promoter sequences. , 2002, The Journal of biological chemistry.

[32]  S. Lapan,et al.  Transcriptome analysis of the planarian eye identifies ovo as a specific regulator of eye regeneration. , 2012, Cell reports.

[33]  Günther Zehetner,et al.  OntoBlast function: from sequence similarities directly to potential functional annotations by ontology terms , 2003, Nucleic Acids Res..

[34]  K. Yau,et al.  Phototransduction in mouse rods and cones , 2007, Pflügers Archiv - European Journal of Physiology.

[35]  Vasilis Vasiliou,et al.  Scallop lens Ω-crystallin (ALDH1A9): A novel tetrameric aldehyde dehydrogenase , 2006 .

[36]  Sönke Johnsen,et al.  Mesopelagic Cephalopods Switch between Transparency and Pigmentation to Optimize Camouflage in the Deep , 2011, Current Biology.

[37]  Thomas W. Cronin,et al.  Behavioural evidence for polarisation vision in stomatopods reveals a potential channel for communication , 1999, Current Biology.

[38]  Denis Krompass,et al.  Performance, Accuracy, and Web Server for Evolutionary Placement of Short Sequence Reads under Maximum Likelihood , 2011, Systematic biology.

[39]  J. Piatigorsky,et al.  Lens crystallins: the evolution and expression of proteins for a highly specialized tissue. , 1988, Annual review of biochemistry.

[40]  Lars Gislén,et al.  Advanced optics in a jellyfish eye , 2005, Nature.

[41]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[42]  Kazutaka Katoh,et al.  Recent developments in the MAFFT multiple sequence alignment program , 2008, Briefings Bioinform..

[43]  B. Šket,et al.  Comparison between some epigean and hypogean populations of Asellus aquaticus (Crustacea: Isopoda: Asellidae) , 1996, Hydrobiologia.

[44]  Todd H. Oakley,et al.  The Origins of Novel Protein Interactions during Animal Opsin Evolution , 2007, PloS one.

[45]  J. Piatigorsky,et al.  Lens Crystallins of Invertebrates , 1996 .

[46]  Justin Marshall,et al.  Circular Polarization Vision in a Stomatopod Crustacean , 2008, Current Biology.

[47]  Z. Kozmík,et al.  Omega -crystallin of the scallop lens. A dimeric aldehyde dehydrogenase class 1/2 enzyme-crystallin. , 2000, The Journal of biological chemistry.

[48]  J. Piatigorsky,et al.  Aldehyde dehydrogenase-derived omega-crystallins of squid and octopus. Specialization for lens expression. , 1993, The Journal of biological chemistry.

[49]  Yi Zheng,et al.  iAssembler: a package for de novo assembly of Roche-454/Sanger transcriptome sequences , 2011, BMC Bioinformatics.

[50]  Roger T. Hanlon,et al.  Evidence for distributed light sensing in the skin of cuttlefish, Sepia officinalis , 2010, Biology Letters.

[51]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[52]  Peer Bork,et al.  The Genome of the Model Beetle and Pest Tribolium Castaneum Vertebrate-specific Orthologues Insect-specific Orthologues Homology Undetectable Similarity , 2022 .

[53]  A. Nekrutenko,et al.  Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences , 2010, Genome Biology.

[54]  Tsutomu Kouyama,et al.  Crystal structure of squid rhodopsin , 2008, Nature.

[55]  Aaron Wiegand,et al.  Spatial analysis of biomineralization associated gene expression from the mantle organ of the pearl oyster Pinctada maxima , 2011, BMC Genomics.

[56]  Serena J Silver,et al.  Signaling circuitries in development: insights from the retinal determination gene network , 2004, Development.

[57]  A. Garm,et al.  Swim pacemakers in box jellyfish are modulated by the visual input , 2008, Journal of Comparative Physiology A.

[58]  Qiang Wang,et al.  The oyster genome reveals stress adaptation and complexity of shell formation , 2012, Nature.

[59]  Michinomae,et al.  STRUCTURAL BASIS FOR WAVELENGTH DISCRIMINATION IN THE BANKED RETINA OF THE FIREFLY SQUID WATASENIA SCINTILLANS , 1994, The Journal of experimental biology.

[60]  Louis S. Kornicker,et al.  Myodocopid Ostracoda of Pillar Point Harbor, Half Moon Bay, California , 1997 .

[61]  Bartek Wilczynski,et al.  Biopython: freely available Python tools for computational molecular biology and bioinformatics , 2009, Bioinform..

[62]  J. Northup,et al.  Purification, Characterization, and Partial Amino Acid Sequence of a G Protein-activated Phospholipase C from Squid Photoreceptors (*) , 1995, The Journal of Biological Chemistry.

[63]  M. Hirata,et al.  Inositol-1,4,5-trisphosphate-binding proteins controlling the phototransduction cascade of invertebrate visual cells. , 2001, The Journal of experimental biology.

[64]  Artyom Kopp,et al.  Evolution in black and white: genetic control of pigment patterns in Drosophila. , 2003, Trends in genetics : TIG.

[65]  Carl J. Schmidt,et al.  GoFigure: Automated Gene OntologyTM annotation , 2003, Bioinform..

[66]  Todd H. Oakley,et al.  Ocular and Extraocular Expression of Opsins in the Rhopalium of Tripedalia cystophora (Cnidaria: Cubozoa) , 2014, PloS one.

[67]  Daniel Osorio,et al.  Spectral sensitivities of photoreceptors and lamina monopolar cells in the dragonfly, Hemicordulia tau , 1991, Journal of Comparative Physiology A.

[68]  D. Nilsson,et al.  Rhopalia are integrated parts of the central nervous system in box jellyfish , 2006, Cell and Tissue Research.

[69]  P. Corbet Dragonflies: Behavior and Ecology of Odonata , 1999 .

[70]  BMC Bioinformatics , 2005 .

[71]  Sönke Johnsen,et al.  A highly distributed Bragg stack with unique geometry provides effective camouflage for Loliginid squid eyes , 2011, Journal of The Royal Society Interface.

[72]  T Hara,et al.  Molecular characterization and functional expression of squid retinal-binding protein. A novel species of hydrophobic ligand-binding protein. , 1994, The Journal of biological chemistry.

[73]  Andrej Blejec,et al.  Racial differentiation in Asellus aquaticus (L.) (Crustacea: Isopoda: Asellidae) , 2004 .

[74]  I. Ziegler,et al.  The pteridine pathway in zebrafish: regulation and specification during the determination of neural crest cell-fate. , 2003, Pigment cell research.

[75]  A. Stamatakis,et al.  MLTreeMap - accurate Maximum Likelihood placement of environmental DNA sequences into taxonomic and functional reference phylogenies , 2010, BMC Genomics.

[76]  William Chen,et al.  Osiris: accessible and reproducible phylogenetic and phylogenomic analyses within the Galaxy workflow management system , 2014, BMC Bioinformatics.

[77]  J. Piatigorsky,et al.  Lens crystallins of invertebrates--diversity and recruitment from detoxification enzymes and novel proteins. , 1996, European journal of biochemistry.

[78]  Hui-Hsien Chou,et al.  DNA sequence quality trimming and vector removal , 2001, Bioinform..

[79]  Tom D. Schultz,et al.  Structural colours create a flashing cue for sexual recognition and male quality in a Neotropical giant damselfly , 2009 .

[80]  References , 1971 .

[81]  Markus Friedrich,et al.  Phototransduction and clock gene expression in the troglobiont beetle Ptomaphagus hirtus of Mammoth cave , 2011, Journal of Experimental Biology.

[82]  Anders Garm,et al.  Structure and optics of the eyes of the box jellyfish Chiropsella bronzie , 2009, Journal of Comparative Physiology A.

[83]  Todd H. Oakley,et al.  The evolution of phototransduction from an ancestral cyclic nucleotide gated pathway , 2010, Proceedings of the Royal Society B: Biological Sciences.

[84]  Daniel J. Blankenberg,et al.  Galaxy: a platform for interactive large-scale genome analysis. , 2005, Genome research.

[85]  Martin J. How,et al.  A Different Form of Color Vision in Mantis Shrimp , 2014, Science.

[86]  Perry G. Ridge,et al.  Mitochondrial genomic variation associated with higher mitochondrial copy number: the Cache County Study on Memory Health and Aging , 2014, BMC Bioinformatics.

[87]  N. Justin Marshall,et al.  A retina with at least ten spectral types of photoreceptors in a mantis shrimp , 1989, Nature.

[88]  K. Crandall,et al.  Rhodopsin evolution in the dark , 1997, Nature.

[89]  Erik I. Svensson,et al.  Contemporary evolution of secondary sexual traits in the wild , 2007 .

[90]  J. Rougemont,et al.  A rapid bootstrap algorithm for the RAxML Web servers. , 2008, Systematic biology.

[91]  Akihisa Terakita,et al.  Isolation and characterization of a retinal-binding protein from the squid retina , 1987, Vision Research.

[92]  Todd H. Oakley,et al.  Gene duplication and the origins of morphological complexity in pancrustacean eyes, a genomic approach , 2010, BMC Evolutionary Biology.

[93]  Tao Wang,et al.  The Drosophila Visual Cycle and De Novo Chromophore Synthesis Depends on rdhB , 2012, The Journal of Neuroscience.

[94]  Todd H. Oakley,et al.  Evidence for light perception in a bioluminescent organ , 2009, Proceedings of the National Academy of Sciences.

[95]  M. McFall-Ngai,et al.  Reflectins: The Unusual Proteins of Squid Reflective Tissues , 2004, Science.

[96]  Kosuke Takano,et al.  Jellyfish vision starts with cAMP signaling mediated by opsin-Gs cascade , 2008, Proceedings of the National Academy of Sciences.

[97]  Todd H. Oakley Myodocopa (Crustacea: Ostracoda) as models for evolutionary studies of light and vision: multiple origins of bioluminescence and extreme sexual dimorphism , 2005, Hydrobiologia.

[98]  S. Chiou,et al.  A novel crystallin from octopus lens , 1988, FEBS letters.