Application of compressed sensing to the simulation of atomic systems

Compressed sensing is a method that allows a significant reduction in the number of samples required for accurate measurements in many applications in experimental sciences and engineering. In this work, we show that compressed sensing can also be used to speed up numerical simulations. We apply compressed sensing to extract information from the real-time simulation of atomic and molecular systems, including electronic and nuclear dynamics. We find that, compared to the standard discrete Fourier transform approach, for the calculation of vibrational and optical spectra the total propagation time, and hence the computational cost, can be reduced by approximately a factor of five.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  J. M. Dickey,et al.  Computer Simulation of the Lattice Dynamics of Solids , 1969 .

[3]  E. Koch,et al.  Optical absorption of benzene vapour for photon energies from 6 eV to 35 eV , 1972 .

[4]  S. Gull,et al.  Image reconstruction from incomplete and noisy data , 1978, Nature.

[5]  E. Gross,et al.  Density-Functional Theory for Time-Dependent Systems , 1984 .

[6]  C. Brooks Computer simulation of liquids , 1989 .

[7]  J. Hormes,et al.  Experimental and quantum-theoretical investigation of the circular dichroism spectrum of R-methyloxirane , 1991 .

[8]  M.G.B. Drew,et al.  The art of molecular dynamics simulation , 1996 .

[9]  George F. Bertsch,et al.  Time-dependent local-density approximation in real time , 1996 .

[10]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[11]  Jorge M. Seminario,et al.  Recent developments and applications of modern density functional theory , 1996 .

[12]  Mark E. Casida,et al.  Time-Dependent Density Functional Response Theory of Molecular Systems: Theory, Computational Methods, and Functionals , 1996 .

[13]  D. C. Rapaport,et al.  The Art of Molecular Dynamics Simulation , 1997 .

[14]  L. Curtiss,et al.  Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation , 1997 .

[15]  L. D. Künne,et al.  Recent Developments and Applications of Modern Density Functional Theory , 1998 .

[16]  G. F. Bertsch,et al.  Application of the time-dependent local density approximation to optical activity , 1999 .

[17]  Angel Rubio,et al.  Real-space, real-time method for the dielectric function , 2000 .

[18]  Angel Rubio,et al.  Excited states dynamics in time-dependent density functional theory , 2002, cond-mat/0206307.

[19]  Colleen Morrison Frontiers in Optics , 2003 .

[20]  Optical Properties of Nanostructures from Time-Dependent Density Functional Theory , 2004 .

[21]  Gholamreza Vakili-Nezhaad,et al.  An application of non-extensive statistical mechanics to nanosystems , 2004 .

[22]  Andrei V. Pisliakov,et al.  Two-dimensional optical three-pulse photon echo spectroscopy. I. Nonperturbative approach to the calculation of spectra. , 2006, The Journal of chemical physics.

[23]  H. Appel,et al.  octopus: a tool for the application of time‐dependent density functional theory , 2006 .

[24]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[25]  Takashi Nakatsukasa,et al.  Real‐time, real‐space implementation of the linear response time‐dependent density‐functional theory , 2006 .

[26]  J J Rehr,et al.  Real-time time-dependent density functional theory approach for frequency-dependent nonlinear optical response in photonic molecules. , 2007, The Journal of chemical physics.

[27]  Xavier Andrade,et al.  Time-dependent density functional theory scheme for efficient calculations of dynamic (hyper)polarizabilities. , 2007, The Journal of chemical physics.

[28]  David L Donoho,et al.  NMR data processing using iterative thresholding and minimum l(1)-norm reconstruction. , 2007, Journal of magnetic resonance.

[29]  D. Donoho,et al.  Sparse MRI: The application of compressed sensing for rapid MR imaging , 2007, Magnetic resonance in medicine.

[30]  Richard G. Baraniuk,et al.  Compressive Sensing , 2008, Computer Vision, A Reference Guide.

[31]  E.J. Candes,et al.  An Introduction To Compressive Sampling , 2008, IEEE Signal Processing Magazine.

[32]  Michael P. Friedlander,et al.  Probing the Pareto Frontier for Basis Pursuit Solutions , 2008, SIAM J. Sci. Comput..

[33]  X. Andrade,et al.  Efficient formalism for large-scale ab initio molecular dynamics based on time-dependent density functional theory. , 2007, Physical review letters.

[34]  Jürg Hutter,et al.  Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods , 2009 .

[35]  Xavier Andrade,et al.  Towards a gauge invariant method for molecular chiroptical properties in TDDFT. , 2009, Physical chemistry chemical physics : PCCP.

[36]  M. Ceotto,et al.  Multiple coherent states for first-principles semiclassical initial value representation molecular dynamics. , 2009, The Journal of chemical physics.

[37]  Xavier Andrade,et al.  Modified Ehrenfest Formalism for Efficient Large-Scale ab initio Molecular Dynamics. , 2008, Journal of chemical theory and computation.

[38]  Michael Elad,et al.  Applications of Sparse Representation and Compressive Sensing , 2010, Proc. IEEE.

[39]  Yonina C. Eldar,et al.  Introduction to the Issue on Compressive Sensing , 2010, IEEE J. Sel. Top. Signal Process..

[40]  Yaron Silberberg,et al.  Compressive Fourier Transform Spectroscopy , 2010, 1006.2553.

[41]  Alán Aspuru-Guzik,et al.  Quantum process tomography of excitonic dimers from two-dimensional electronic spectroscopy. I. General theory and application to homodimers. , 2011, The Journal of chemical physics.

[42]  G. Bertsch,et al.  Magnetic circular dichroism in real-time time-dependent density functional theory. , 2010, The Journal of chemical physics.

[43]  R. Kosut,et al.  Efficient measurement of quantum dynamics via compressive sensing. , 2009, Physical review letters.

[44]  Mohammed AlQuraishi,et al.  Direct inference of protein–DNA interactions using compressed sensing methods , 2011, Proceedings of the National Academy of Sciences.

[45]  Xavier Andrade,et al.  Time-dependent density-functional theory in massively parallel computer architectures: the octopus project , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[46]  Lei Zhu,et al.  Faster STORM using compressed sensing , 2012, Nature Methods.

[47]  D. L. Donoho,et al.  Compressed sensing , 2006, IEEE Trans. Inf. Theory.