Big Data: Big Promises for Information Security

Big Data is related to technologies for collecting, processing, analyzing and extracting useful knowledge from very large volumes of structured and unstructured data generated by different sources at high speed. Big Data creates critical information security and privacy problems, at the same time Big Data analytics promises significant opportunities for prevention and detection of advanced cyber-attacks using correlated internal and external security data. We must address several challenges to realize true potential of Big Data for information security. The paper analyzes Big Data applications for information security problems, and defines research directions on Big Data analytics for security intelligence.

[1]  Tudor Dumitras,et al.  Toward a standard benchmark for computer security research: the worldwide intelligence network environment (WINE) , 2011, BADGERS '11.

[2]  Tariq Mahmood,et al.  Security Analytics: Big Data Analytics for cybersecurity: A review of trends, techniques and tools , 2013, 2013 2nd National Conference on Information Assurance (NCIA).

[3]  J. Doug Tygar,et al.  Adversarial machine learning , 2019, AISec '11.

[4]  Tom White,et al.  Hadoop: The Definitive Guide , 2009 .

[5]  Alexandros Labrinidis,et al.  Challenges and Opportunities with Big Data , 2012, Proc. VLDB Endow..

[6]  Alvaro A. Cárdenas,et al.  Big Data Analytics for Security , 2013, IEEE Security & Privacy.

[7]  Stefano Zanero,et al.  Flaws and frauds in the evaluation of IDS/IPS technologies , 2007 .

[8]  B. Ripley,et al.  Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.

[9]  M. Waldrop,et al.  Community cleverness required , 2008, Nature.

[10]  Daniel A. Keim,et al.  Visual analytics for the big data era — A comparative review of state-of-the-art commercial systems , 2012, 2012 IEEE Conference on Visual Analytics Science and Technology (VAST).

[11]  Ali A. Ghorbani,et al.  A Survey of Visualization Systems for Network Security , 2012, IEEE Transactions on Visualization and Computer Graphics.

[12]  J. Manyika Big data: The next frontier for innovation, competition, and productivity , 2011 .

[13]  William K. Robertson,et al.  Beehive: large-scale log analysis for detecting suspicious activity in enterprise networks , 2013, ACSAC.

[14]  Radu State,et al.  BotCloud: Detecting botnets using MapReduce , 2011, 2011 IEEE International Workshop on Information Forensics and Security.

[15]  Divyakant Agrawal,et al.  Big data and cloud computing: current state and future opportunities , 2011, EDBT/ICDT '11.

[16]  Luc Quoniam,et al.  How to Use Big Data Technologies to Optimize Operations in Upstream Petroleum Industry , 2013, ArXiv.

[17]  Keith W. Miller,et al.  Big Data: New Opportunities and New Challenges [Guest editors' introduction] , 2013, Computer.

[18]  Richard J. Enbody,et al.  Targeted Cyberattacks: A Superset of Advanced Persistent Threats , 2013, IEEE Security & Privacy.

[19]  Raffael Marty,et al.  Applied Security Visualization , 2008 .

[20]  Sanjay Ghemawat,et al.  MapReduce: Simplified Data Processing on Large Clusters , 2004, OSDI.