Genomics-driven discovery of chiral triscatechol siderophores with enantiomeric Fe(iii) coordination

Ferric complexes of triscatechol siderophores may assume one of two enantiomeric configurations at the iron site. Chirality is known to be important in the iron uptake process, however an understanding of the molecular features directing stereospecific coordination remains ambiguous. Synthesis of the full suite of (DHBL/DLysL/DSer)3 macrolactone diastereomers, which includes the siderophore cyclic trichrysobactin (CTC), enables the effects that the chirality of Lys and Ser residues exert on the configuration of the Fe(iii) complex to be defined. Computationally optimized geometries indicate that the Λ/Δ configurational preferences are set by steric interactions between the Lys sidechains and the peptide backbone. The ability of each (DHBL/DLysL/DSer)3 diastereomer to form a stable Fe(iii) complex prompted a genomic search for biosynthetic gene clusters (BGCs) encoding the synthesis of these diastereomers in microbes. The genome of the plant pathogen Dickeya chrysanthemi EC16 was sequenced and the genes responsible for the biosynthesis of CTC were identified. A related but distinct BGC was identified in the genome of the opportunistic pathogen Yersinia frederiksenii ATCC 33641; isolation of the siderophore from Y. frederiksenii ATCC 33641, named frederiksenibactin (FSB), revealed the triscatechol oligoester, linear-(DHBLLysLSer)3. Circular dichroism (CD) spectroscopy establishes that Fe(iii)–CTC and Fe(iii)–FSB are formed in opposite enantiomeric configuration, consistent with the results of the ferric complexes of the cyclic (DHBL/DLysL/DSer)3 diastereomers.

[1]  Dmitry Antipov,et al.  Versatile genome assembly evaluation with QUAST-LG , 2018, Bioinform..

[2]  Elizabeth M. Nolan,et al.  Determination of the Molecular Structures of Ferric Enterobactin and Ferric Enantioenterobactin Using Racemic Crystallography. , 2017, Journal of the American Chemical Society.

[3]  A. Butler,et al.  Biosynthetic considerations of triscatechol siderophores framed on serine and threonine macrolactone scaffolds. , 2017, Metallomics : integrated biometal science.

[4]  J. Chun,et al.  A large-scale evaluation of algorithms to calculate average nucleotide identity , 2017, Antonie van Leeuwenhoek.

[5]  Eric P. Nawrocki,et al.  NCBI prokaryotic genome annotation pipeline , 2016, Nucleic acids research.

[6]  Tami D. Lieberman,et al.  Inexpensive Multiplexed Library Preparation for Megabase-Sized Genomes , 2015, bioRxiv.

[7]  A. Butler,et al.  Turnerbactin, a Novel Triscatecholate Siderophore from the Shipworm Endosymbiont Teredinibacter turnerae T7901 , 2013, PloS one.

[8]  Sergey I. Nikolenko,et al.  SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing , 2012, J. Comput. Biol..

[9]  D. Rognan,et al.  Pyochelin enantiomers and their outer-membrane siderophore transporters in fluorescent pseudomonads: structural bases for unique enantiospecific recognition. , 2011, Journal of the American Chemical Society.

[10]  A. Butler,et al.  Chrysobactin siderophores produced by Dickeya chrysanthemi EC16. , 2011, Journal of natural products.

[11]  A. Butler,et al.  Vanchrobactin and anguibactin siderophores produced by Vibrio sp. DS40M4. , 2010, Journal of natural products.

[12]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[13]  K. Raymond,et al.  Enzymatic hydrolysis of trilactone siderophores: where chiral recognition occurs in enterobactin and bacillibactin iron transport. , 2009, Journal of the American Chemical Society.

[14]  D. Rognan,et al.  Stereospecificity of the Siderophore Pyochelin Outer Membrane Transporters in Fluorescent Pseudomonads* , 2009, Journal of Biological Chemistry.

[15]  C. Macrae,et al.  Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures , 2008 .

[16]  C. Reimmann,et al.  Pseudomonas fluorescens CHA0 Produces Enantio-pyochelin, the Optical Antipode of the Pseudomonas aeruginosa Siderophore Pyochelin* , 2007, Journal of Biological Chemistry.

[17]  Keith S Wilson,et al.  An [{Fe(mecam)}2]6- bridge in the crystal structure of a ferric enterobactin binding protein. , 2006, Angewandte Chemie.

[18]  K. Raymond,et al.  Corynebactin and enterobactin: related siderophores of opposite chirality. , 2002, Journal of the American Chemical Society.

[19]  D. Expert,et al.  Chrysobactin-dependent Iron Acquisition inErwinia chrysanthemi , 2002, The Journal of Biological Chemistry.

[20]  Mark A. Ratner,et al.  6-31G * basis set for atoms K through Zn , 1998 .

[21]  Seth M. Cohen,et al.  High-Yield Synthesis of the Enterobactin Trilactone and Evaluation of Derivative Siderophore Analogs1 , 1997 .

[22]  Robert J. A. Ramirez,et al.  A much improved synthesis of the siderophore enterobactin , 1997 .

[23]  K. Burke,et al.  Rationale for mixing exact exchange with density functional approximations , 1996 .

[24]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[25]  L. A. Carpino 1-Hydroxy-7-azabenzotriazole. An efficient peptide coupling additive , 1993 .

[26]  E. Solomon,et al.  Spectroscopic studies of the electronic structure of iron(III) tris(catecholates) , 1991 .

[27]  D. Ecker,et al.  Iron(III) coordination chemistry of linear dihydroxyserine compounds derived from enterobactin , 1991 .

[28]  T. P. Tufano,et al.  Coordination chemistry of microbial iron transport compounds. 21. Kinetics and mechanism of iron exchange in hydroxamate siderophore complexes , 1981 .

[29]  M. Venuti,et al.  Synthesis of iron chelators. Enterobactin, enantioenterobactin, and a chiral analog , 1981 .

[30]  J. Neilands,et al.  Stereospecificity of the ferric enterobactin receptor of Escherichia coli K-12. , 1981, The Journal of biological chemistry.

[31]  S. S. Isied,et al.  Coordination isomers of biological iron transport compounds. V. The preparation and chirality of the chromium(III) enterobactin complex and model tris(catechol)chromium(III) analogues. , 1976, Journal of the American Chemical Society.

[32]  G. N. Ramachandran,et al.  Stereochemistry of polypeptide chain configurations. , 1963, Journal of molecular biology.

[33]  Peter Marfey,et al.  Determination ofD-amino acids. II. Use of a bifunctional reagent, 1,5-difluoro-2,4-dinitrobenzene , 1984 .

[34]  J. Davies,et al.  Assessment of racemisation in N-alkylated amino-acid derivatives during peptide coupling in a model dipeptide system , 1981 .