The statistics of natural images

Recently there has been a resurgence of interest in the properties of natural images. Their statistics are important not only in image compression but also for the study of sensory processing in biology, which can be viewed as satisfying certain ‘design criteria’. This review summarizes previous work on image statistics and presents our own data. Perhaps the most notable property of natural images is an invariance to scale. We present data to support this claim as well as evidence for a hierarchical invariance in natural scenes. These symmetries provide a powerful description of natural images as they greatly restrict the class of allowed distributions.

[1]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[2]  Claude E. Shannon,et al.  Prediction and Entropy of Printed English , 1951 .

[3]  E. Kretzmer Statistics of television signals , 1952 .

[4]  F. Attneave Some informational aspects of visual perception. , 1954, Psychological review.

[5]  L. Ryder,et al.  Quantum Field Theory , 2001, Foundations of Modern Physics.

[6]  Athanasios Papoulis,et al.  Probability, Random Variables and Stochastic Processes , 1965 .

[7]  D. G. Green,et al.  Optical and retinal factors affecting visual resolution. , 1965, The Journal of physiology.

[8]  F. Campbell,et al.  Optical quality of the human eye , 1966, The Journal of physiology.

[9]  L. Kadanoff Scaling laws for Ising models near T(c) , 1966 .

[10]  G. F. Cooper,et al.  Development of the Brain depends on the Visual Environment , 1970, Nature.

[11]  C. R. Carlson,et al.  Image Descriptors for Displays , 1977 .

[12]  A. Hughes The Topography of Vision in Mammals of Contrasting Life Style: Comparative Optics and Retinal Organisation , 1977 .

[13]  R. Voss,et al.  ’’1/f noise’’ in music: Music from 1/f noise , 1978 .

[14]  J. Lythgoe The Ecology of vision , 1979 .

[15]  S. Laughlin A Simple Coding Procedure Enhances a Neuron's Information Capacity , 1981, Zeitschrift fur Naturforschung. Section C, Biosciences.

[16]  J. Movshon,et al.  Visual neural development. , 1981, Annual review of psychology.

[17]  David R. Brillinger,et al.  Time Series: Data Analysis and Theory. , 1982 .

[18]  H. Barlow What causes trichromacy? A theoretical analysis using comb-filtered spectra , 1982, Vision Research.

[19]  S. Laughlin,et al.  Predictive coding: a fresh view of inhibition in the retina , 1982, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[20]  G. Buchsbaum,et al.  Trichromacy, opponent colours coding and optimum colour information transmission in the retina , 1983, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[21]  K. Wilson The renormalization group and critical phenomena , 1983 .

[22]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  I. Procaccia Fractal structures in turbulence , 1984 .

[24]  I. Ohzawa,et al.  Contrast gain control in the cat's visual system. , 1985, Journal of neurophysiology.

[25]  J. Cardy Conformal invariance and critical behavior , 1986 .

[26]  L. Maloney Evaluation of linear models of surface spectral reflectance with small numbers of parameters. , 1986, Journal of the Optical Society of America. A, Optics and image science.

[27]  J. Dowling The Retina: An Approachable Part of the Brain , 1988 .

[28]  G. J. Burton,et al.  Color and spatial structure in natural scenes. , 1987, Applied optics.

[29]  B. Frieden,et al.  Image recovery: Theory and application , 1987, IEEE Journal of Quantum Electronics.

[30]  D J Field,et al.  Relations between the statistics of natural images and the response properties of cortical cells. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[31]  Heinz-Otto Peitgen,et al.  The science of fractal images , 2011 .

[32]  John G. Daugman,et al.  Complete discrete 2-D Gabor transforms by neural networks for image analysis and compression , 1988, IEEE Trans. Acoust. Speech Signal Process..

[33]  Arun N. Netravali,et al.  Digital Pictures: Representation and Compression , 1988 .

[34]  Stuart German,et al.  Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images , 1988 .

[35]  Terence D. Sanger,et al.  Optimal unsupervised learning in a single-layer linear feedforward neural network , 1989, Neural Networks.

[36]  Ralph Linsker,et al.  How to Generate Ordered Maps by Maximizing the Mutual Information between Input and Output Signals , 1989, Neural Computation.

[37]  Joseph J. Atick,et al.  Towards a Theory of Early Visual Processing , 1990, Neural Computation.

[38]  R Linsker,et al.  Perceptual neural organization: some approaches based on network models and information theory. , 1990, Annual review of neuroscience.

[39]  William Bialek,et al.  Optimal Filtering in the Salamander Retina , 1990, NIPS.

[40]  Reiner Lenz,et al.  Group invariant pattern recognition , 1990, Pattern Recognit..

[41]  M. Morrone,et al.  Vision: Feature detection in biological and artificial visual systems , 1990 .

[42]  W. Bialek,et al.  Optimal Sampling of Natural Images: A Design Principle for the Visual System , 1990, NIPS 1990.

[43]  Y. Gagne,et al.  Velocity probability density functions of high Reynolds number turbulence , 1990 .

[44]  K. Hsü,et al.  Fractal geometry of music. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[45]  C. Curcio,et al.  Topography of ganglion cells in human retina , 1990, The Journal of comparative neurology.

[46]  C. Webber,et al.  Competitive learning, natural images and cortical cells , 1991 .

[47]  John W. Woods,et al.  Compound Gauss-Markov random fields for image estimation , 1991, IEEE Trans. Signal Process..

[48]  Zhaoping Li,et al.  Understanding Retinal Color Coding from First Principles , 1992, Neural Computation.

[49]  J. Mollon,et al.  The spatial arrangement of cones in the primate fovea , 1992, Nature.

[50]  J. Dannemiller Spectral reflectance of natural objects: how many basis functions are necessary? , 1992 .

[51]  Leslie S. Smith,et al.  The principal components of natural images , 1992 .

[52]  C. Curcio,et al.  Packing geometry of human cone photoreceptors: variation with eccentricity and evidence for local anisotropy. , 1992, Visual neuroscience.

[53]  S. Laughlin Retinal information capacity and the function of the pupil , 1992, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[54]  William Bialek,et al.  Seeing Beyond the Nyquist Limit , 1999, Neural Computation.

[55]  Joseph J. Atick,et al.  What Does the Retina Know about Natural Scenes? , 1992, Neural Computation.

[56]  D. Heeger Normalization of cell responses in cat striate cortex , 1992, Visual Neuroscience.

[57]  D. Tolhurst,et al.  Amplitude spectra of natural images , 1992 .

[58]  S. Laughlin Information capacity and the function of the human pupil , 1992 .

[59]  J. Nadal,et al.  Optimal unsupervised learning , 1994 .

[60]  William Bialek,et al.  Statistics of Natural Images: Scaling in the Woods , 1993, NIPS.

[61]  R. Webster Ambient noise statistics , 1993, IEEE Trans. Signal Process..

[62]  Robert J. Safranek,et al.  Signal compression based on models of human perception , 1993, Proc. IEEE.

[63]  Fred Rieke,et al.  Coding Efficiency and Information Rates in Sensory Neurons , 1993 .

[64]  A. Jacquin Fractal image coding: a review , 1993, Proc. IEEE.

[65]  Zhaoping Li,et al.  Toward a Theory of the Striate Cortex , 1994, Neural Computation.

[66]  S. Laughlin Matching coding, circuits, cells, and molecules to signals: General principles of retinal design in the fly's eye , 1994, Progress in Retinal and Eye Research.

[67]  T. K. Truong,et al.  Comparison of international standards for lossless still image compression , 1994, Proc. IEEE.

[68]  Zhaoping Li,et al.  Efficient stereo coding in the multiscale representation , 1994 .

[69]  Daniel L. Ruderman,et al.  Designing receptive fields for highest fidelity , 1994 .

[70]  W. Ebeling,et al.  Entropy and Long-Range Correlations in Literary English , 1993, cond-mat/0204108.

[71]  Ralph Linsker,et al.  Sensory Processing and Information Theory , 1994 .

[72]  David J. Field,et al.  What Is the Goal of Sensory Coding? , 1994, Neural Computation.