Equivalence between Fraïssé's conjecture and Jullien's theorem
暂无分享,去创建一个
[1] Michael Rathjen,et al. Proof-Theoretic Investigations on Kruskal's Theorem , 1993, Ann. Pure Appl. Log..
[2] Jeffry L. Hirst. Reverse mathematics and rank functions for directed graphs , 2000, Arch. Math. Log..
[3] J. Kruskal. Well-quasi-ordering, the Tree Theorem, and Vazsonyi’s conjecture , 1960 .
[4] Roland Fraïssé. Theory of relations , 1986 .
[5] Joseph G. Rosenstein. Recursive Linear Orderings , 1984 .
[6] Julia A. Knight,et al. Computable structures and the hyperarithmetical hierarchy , 2000 .
[7] Maurice Pouzet,et al. Linear Extensions of Ordered Sets , 1982 .
[8] Peter Clote,et al. The metamathematics of Fraïssé's order type conjecture , 1990 .
[9] Richard Laver,et al. On Fraisse's order type conjecture , 1971 .
[10] Peter Clote. The metamathematics of scattered linear orderings , 1989, Arch. Math. Log..
[11] Stephen G. Simpson,et al. Subsystems of second order arithmetic , 1999, Perspectives in mathematical logic.
[12] Stephen G. Simpson,et al. Nonprovability of Certain Combinatorial Properties of Finite Trees , 1985 .
[13] C. St. J. A. Nash-Williams,et al. On better-quasi-ordering transfinite sequences , 1968, Mathematical Proceedings of the Cambridge Philosophical Society.
[14] Richard A. Shore,et al. On the strength of Fraïssé’s conjecture , 1993 .
[15] Rodney G. Downey,et al. Computability-theoretic and proof-theoretic aspects of partial and linear orderings , 2003 .
[16] Antonio Montalbán,et al. Up to equimorphism, hyperarithmetic is recursive , 2005, Journal of Symbolic Logic.
[17] E. Szpilrajn. Sur l'extension de l'ordre partiel , 1930 .
[18] Alberto Marcone,et al. WQO AND BQO THEORY IN SUBSYSTEMS OF SECOND ORDER ARITHMETIC , 2003 .