Nanorings and nanocrescents formed via shaped nanosphere lithography: a route toward large areas of infrared metamaterials

This paper presents a new approach to nanosphere lithography, which overcomes undesirable manufacturing issues such as complex tilted-rotary evaporation and ion beam milling. A key innovation in this process is the use of non-conductive edge strips placed on top of the samples prior to metal removal. Such elements help to direct the flow of reactive ions during plasma etching and produce well-ordered arrays of metallic nanorings and nanocrescents over large areas of ∼1 cm2. The obtained highly uniform nanocrescent array exhibits an electric resonance of 1.7 μm and a magnetic resonance of 3 μm. The absorption resonances of the fabricated nanorings depend on their diameters and shift toward shorter wavelengths (λ = 1.7 μm for do = 308 nm) as compared to larger rings (λ = 2.2 μm do = 351 nm). FDTD-based simulations match well with the experimental results. This ‘shaped nanosphere lithography’ approach creates opportunities to generate nanorings and nanocrescents that promise potential applications in chemical and biological sensing, for surface enhanced spectroscopy and in the field of infrared metamaterials.

[1]  Chongjun Jin,et al.  Inverted hemispherical mask colloidal lithography , 2009, Nanotechnology.

[2]  P. Nordlander,et al.  Shedding light on dark plasmons in gold nanorings , 2008 .

[3]  Yayi Wei,et al.  Advanced Processes for 193-nm Immersion Lithography , 2009 .

[4]  D. Arnush,et al.  Ion-Shading Effects During Metal Etch in Plasma Processing , 2007, IEEE Transactions on Plasma Science.

[5]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[6]  Matthias Tamm,et al.  Parallel preparation of densely packed arrays of 150-nm gold-nanocrescent resonators in three dimensions. , 2009, Small.

[7]  R. Medianu,et al.  Fabrication of 2-D nanostructures via metal deposition through a colloidal mask: comparison between thermal evaporation and RF magnetron sputtering , 2008 .

[8]  Byoungho Lee,et al.  Plasmonic Nanostructures for Nano-Scale Bio-Sensing , 2011, Sensors.

[9]  Willie J Padilla,et al.  Composite medium with simultaneously negative permeability and permittivity , 2000, Physical review letters.

[10]  Sarah Kim,et al.  Nanomachining by colloidal lithography. , 2006, Small.

[11]  J. Cooper,et al.  Tuneable visible resonances in crescent shaped nano-split-ring resonators , 2007 .

[12]  Kuniaki Nagayama,et al.  Colored multilayers from transparent submicrometer spheres , 1993 .

[13]  Fabrication and Optical Characterization of Photonic Metamaterials , 2009 .

[14]  J. Pendry,et al.  Magnetism from conductors and enhanced nonlinear phenomena , 1999 .

[15]  L. Calcagno,et al.  Structural modification of polymer films by ion irradiation , 1992 .

[16]  M. Kreiter,et al.  Tuning resonances on crescent-shaped noble-metal nanoparticles , 2007 .

[17]  Javier Aizpurua,et al.  Gold nanoring trimers: a versatile structure for infrared sensing. , 2010, Optics express.

[18]  Luke P. Lee,et al.  Shadow overlap ion-beam lithography for nanoarchitectures. , 2009, Nano letters (Print).

[19]  S. Pearton,et al.  Influence of redeposition on the plasma etching dynamics , 2007 .

[20]  David R. Smith,et al.  Reversing Light: Negative Refraction , 2004 .

[21]  Shengli Zou Light-driven circular plasmon current in a silver nanoring. , 2008, Optics letters.

[22]  W. Knoll,et al.  Fabrication of gold nanocrescents by angle deposition with nanosphere lithography for localized surface plasmon resonance applications. , 2008, Journal of nanoscience and nanotechnology.

[23]  Julian Wright,et al.  Ultraflat Ternary Nanopatterns Fabricated Using Colloidal Lithography , 2006 .

[24]  J. Zhu,et al.  Ultrahigh‐Density Arrays of Ferromagnetic Nanorings on Macroscopic Areas , 2004 .

[25]  R. Shelby,et al.  Experimental Verification of a Negative Index of Refraction , 2001, Science.

[26]  A. Vijayaraghavan,et al.  Directed self-assembly of block copolymers for use in bit patterned media fabrication , 2013 .

[27]  S. Franssila,et al.  “Etching under the corner” – inclined macropores by reactive ion etching , 2009 .

[28]  K. Crozier,et al.  Gold nanorings as substrates for surface-enhanced Raman scattering. , 2010, Optics letters.

[29]  Jennifer S. Shumaker-Parry,et al.  Fabrication of Crescent‐Shaped Optical Antennas , 2005 .

[30]  Rostislav Bukasov,et al.  Highly tunable infrared extinction properties of gold nanocrescents. , 2007, Nano letters.

[31]  Jane P. Chang,et al.  Plasma–surface interactions , 2003 .

[32]  T. Suleski,et al.  Fabrication and characterization of a biomimetic polarization selective lens. , 2012, Optics letters.

[33]  Harald Giessen,et al.  Hole-mask colloidal nanolithography for large-area low-cost metamaterials and antenna-assisted surface-enhanced infrared absorption substrates. , 2012, ACS nano.

[34]  M. Wegener,et al.  Magnetic Response of Metamaterials at 100 Terahertz , 2004, Science.

[35]  Younan Xia,et al.  Nanofabrication at high throughput and low cost. , 2010, ACS nano.

[36]  Teodor Veres,et al.  Surface enhanced Raman scattering on long-range ordered noble-metal nanocrescent arrays , 2008, Nanotechnology.

[37]  J. L. Grant,et al.  Argon and oxygen sputter etching of polystyrene, polypropylene, and poly(ethylene terephthalate) thin films , 1988 .

[38]  O. Joubert,et al.  The role of mask charging in profile evolution and gate oxide degradation , 2002 .

[39]  Janina Fischer,et al.  Plasmon hybridization and strong near-field enhancements in opposing nanocrescent dimers with tunable resonances. , 2011, Nanoscale.

[40]  Chia-Yang Tsai,et al.  High sensitivity plasmonic index sensor using slab-like gold nanoring array , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[41]  M. Käll,et al.  Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors. , 2007, Nano letters.

[42]  M. Wegener,et al.  Past achievements and future challenges in the development of three-dimensional photonic metamaterials , 2011 .

[43]  M. Madou Fundamentals of microfabrication : the science of miniaturization , 2002 .

[44]  C. Gu,et al.  Visible transmission response of nanoscale complementary metamaterials for sensing applications , 2012, Nanotechnology.

[45]  Peter Nordlander,et al.  The ring: a leitmotif in plasmonics. , 2009, ACS nano.

[46]  H. Butt,et al.  Plasmon hybridization in stacked double crescents arrays fabricated by colloidal lithography. , 2011, Nano letters.

[47]  F. J. Rodríguez-Fortuño,et al.  Double-negative polarization-independent fishnet metamaterial in the visible spectrum. , 2009, Optics letters.

[48]  V. Veselago The Electrodynamics of Substances with Simultaneously Negative Values of ∊ and μ , 1968 .

[49]  Yuebing Zheng,et al.  Fabrication of large area ordered metal nanoring arrays for nanoscale optical sensors , 2006 .

[50]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[51]  Jane F. Bertone,et al.  Single-Crystal Colloidal Multilayers of Controlled Thickness , 1999 .

[52]  M Bergmair,et al.  Single and multilayer metamaterials fabricated by nanoimprint lithography , 2011, Nanotechnology.

[53]  Harald Giessen,et al.  Periodic large-area metallic split-ring resonator metamaterial fabrication based on shadow nanosphere lithography , 2009, CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference.

[54]  I. B. Ivanov,et al.  Mechanism of formation of two-dimensional crystals from latex particles on substrates , 1992 .

[55]  H. Tamura,et al.  Mechanism of the Reduction of Electron Shading Charge Build-up Using Pulsed Plasma , 2002 .

[56]  V. Shalaev Optical negative-index metamaterials , 2007 .

[57]  C. Sow,et al.  Fabrication of a Two-Dimensional Periodic Non-Close-Packed Array of Polystyrene Particles , 2004 .

[58]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[59]  F J García de Abajo,et al.  Optical properties of gold nanorings. , 2003, Physical review letters.

[60]  Kuniaki Nagayama,et al.  Continuous Convective Assembling of Fine Particles into Two-Dimensional Arrays on Solid Surfaces , 1996 .

[61]  Q. Q. Wang,et al.  High sensitivity and large field enhancement of symmetry broken Au nanorings: effect of multipolar plasmon resonance and propagation. , 2009, Optics express.