Classification of regular embeddings of n-dimensional cubes

An orientably-regular map is a 2-cell embedding of a connected graph or multigraph into an orientable surface, such that the group of all orientation-preserving automorphisms of the embedding has a single orbit on the set of all arcs (incident vertex-edge pairs). Such embeddings of the n-dimensional cubes Qn were classified for all odd n by Du, Kwak and Nedela in 2005, and in 2007, Jing Xu proved that for n=2m where m is odd, they are precisely the embeddings constructed by Kwon in 2004. Here, we give a classification of orientably-regular embeddings of Qn for all n. In particular, we show that for all even n (=2m), these embeddings are in one-to-one correspondence with elements σ of order 1 or 2 in the symmetric group Sn such that σ fixes n, preserves the set of all pairs Bi={i,i+m} for 1≤i≤m, and induces the same permutation on this set as the permutation Bi↦Bf(i) for some additive bijection f:ℤm→ℤm. We also give formulae for the numbers of embeddings that are reflexible and chiral, respectively, showing that the ratio of reflexible to chiral embeddings tends to zero for large even n.

[1]  Martin Skoviera,et al.  Regular embeddings of Kn, n where n is a power of 2. II: The non-metacyclic case , 2010, Eur. J. Comb..

[2]  Marston D. E. Conder,et al.  Determination of all Regular Maps of Small Genus , 2001, J. Comb. Theory, Ser. B.

[3]  Jing Xu,et al.  A classification of regular embeddings of hypercubes Q2m with m odd , 2007 .

[4]  Jin Ho Kwak,et al.  Classification of regular embeddings of hypercubes of odd dimension , 2007, Discret. Math..

[5]  Young Soo Kwon New regular embeddings of n‐cubes Qn , 2004, J. Graph Theory.

[6]  Gareth A. Jones,et al.  Regular orientable imbeddings of complete graphs , 1985, J. Comb. Theory, Ser. B.

[7]  Gareth A. Jones,et al.  Regular embeddings of complete bipartite graphs: classification and enumeration , 2009, 0911.4340.

[8]  Martin Skoviera,et al.  Regular Embeddings of Canonical Double Coverings of Graphs , 1996, J. Comb. Theory, Ser. B.

[9]  Young Soo Kwon,et al.  Classification of reflexible regular embeddings and self-Petrie dual regular embeddings of complete bipartite graphs , 2008, Discret. Math..

[10]  G. Jones,et al.  Belyi Functions, Hypermaps and Galois Groups , 1996 .

[11]  John J. Cannon,et al.  The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..

[12]  Marston D. E. Conder,et al.  Regular maps and hypermaps of Euler characteristic -1 to -200 , 2009, J. Comb. Theory, Ser. B.

[13]  Martin Skoviera,et al.  Regular embeddings of Kn, n where n is an odd prime power , 2007, Eur. J. Comb..

[14]  Jozef Širáň,et al.  Characterisation of Graphs which Underlie Regular Maps on Closed Surfaces , 1999 .

[15]  Martin Skoviera,et al.  Regular Maps from Voltage Assignments and Exponent Groups , 1997, Eur. J. Comb..

[16]  Martin Skoviera,et al.  Regular embeddings of Kn, n where n is a power of 2. I: Metacyclic case , 2007, Eur. J. Comb..

[17]  Martin Skoviera,et al.  Regular embeddings of complete bipartite graphs , 2002, Discret. Math..

[18]  Jin Ho Kwak,et al.  Regular embeddings of complete multipartite graphs , 2005, Eur. J. Comb..

[19]  L. Heffter,et al.  Ueber metacyklische Gruppen und Nachbarconfigurationen , 1898 .

[20]  Roman Nedela,et al.  A characterization of regular embeddings of n-dimensional cubes , 2010, Discret. Math..

[21]  Stephen E. Wilson Operators over regular maps. , 1979 .

[22]  Roman Nedela,et al.  A Classification of Regular Embeddings of Graphs of Order a Product of Two Primes , 2004 .

[23]  Young Soo Kwon,et al.  Non-existence of nonorientable regular embeddings of n-dimensional cubes , 2007, Discret. Math..

[24]  Young Soo Kwon New regular embeddings of n-cubes Q n , 2004 .

[25]  Young Soo Kwon,et al.  Regular orientable embeddings of complete bipartite graphs , 2005 .

[26]  Martin Skoviera,et al.  Complete bipartite graphs with a unique regular embedding , 2008, J. Comb. Theory, Ser. B.