Probing dopant segregation in distinct cation sites at perovskite oxide polycrystal interfaces

[1]  Sung-Yoon Chung,et al.  Subsurface Space-Charge Dopant Segregation to Compensate Surface Excess Charge in a Perovskite Oxide. , 2016, Angewandte Chemie.

[2]  R. Bredesen,et al.  Surface defect chemistry of Y-substituted and hydrated BaZrO3 with subsurface space-charge regions , 2016 .

[3]  B. Shin,et al.  Atomic‐Scale Observation of Oxygen Substitution and Its Correlation with Hole‐Transport Barriers in Cu2ZnSnSe4 Thin‐Film Solar Cells , 2016 .

[4]  Yan Chen,et al.  Segregated Chemistry and Structure on (001) and (100) Surfaces of (La1–xSrx)2CoO4 Override the Crystal Anisotropy in Oxygen Exchange Kinetics , 2015 .

[5]  代秀松,et al.  CaCu 3 Ti 4 O 12 陶瓷在太赫兹频段的介电特性研究 , 2015 .

[6]  X. Fang,et al.  Periodic Segregation of Solute Atoms in Fully Coherent Twin Boundaries , 2013, Science.

[7]  Bilge Yildiz,et al.  Cation size mismatch and charge interactions drive dopant segregation at the surfaces of manganite perovskites. , 2013, Journal of the American Chemical Society.

[8]  I. Tanaka,et al.  Defect chemistry of a BaZrO3 Σ3 (111) grain boundary by first principles calculations and space-charge theory. , 2012, Physical chemistry chemical physics : PCCP.

[9]  B. Nyman,et al.  Oxygen vacancy segregation and space-charge effects in grain boundaries of dry and hydrated BaZrO3 , 2012, 1202.4570.

[10]  W. Sigle,et al.  Dopant Segregation and Space Charge Effects in Proton-Conducting BaZrO3 Perovskites , 2012 .

[11]  L. Gu,et al.  Atom-resolved imaging of ordered defect superstructures at individual grain boundaries , 2011, Nature.

[12]  M. Harmer,et al.  The Role of a Bilayer Interfacial Phase on Liquid Metal Embrittlement , 2011, Science.

[13]  Bert Freitag,et al.  Enhanced Detection Sensitivity with a New Windowless XEDS System for AEM Based on Silicon Drift Detector Technology , 2010, Microscopy Today.

[14]  Y. Ikuhara,et al.  Atomic-scale imaging of individual dopant atoms in a buried interface. , 2009, Nature materials.

[15]  Y. Ikuhara,et al.  Direct Determination of Dopant Site Selectivity in Ordered Perovskite CaCu3Ti4O12 Polycrystals by Aberration‐Corrected STEM , 2009 .

[16]  W. Craig Carter,et al.  Complexion: A new concept for kinetic engineering in materials science , 2007 .

[17]  Sung-Yoon Chung,et al.  Tunable current-voltage characteristics in polycrystalline calcium copper titanate , 2007 .

[18]  J. Buban,et al.  Role of Pr segregation in acceptor-state formation at ZnO grain boundaries. , 2006, Physical review letters.

[19]  J. Buban,et al.  Grain Boundary Strengthening in Alumina by Rare Earth Impurities , 2006, Science.

[20]  V. Dravid,et al.  Effect of sintering atmosphere on grain boundary segregation and grain growth in niobium-doped SrTiO3 , 2004 .

[21]  Il-Doo Kim,et al.  Strong nonlinear current–voltage behaviour in perovskite-derivative calcium copper titanate , 2004, Nature materials.

[22]  Si-Young Choi,et al.  Kinetic formation and thickening of intergranular amorphous films at grain boundaries in barium titanate , 2004 .

[23]  G. Duscher,et al.  Bismuth-induced embrittlement of copper grain boundaries , 2004, Nature materials.

[24]  Sung-Yoon Chung,et al.  Intergranular amorphous films and dislocations-promoted grain growth in SrTiO3 , 2003 .

[25]  F. Morrison,et al.  CaCu3Ti4O12: One-step internal barrier layer capacitor , 2002 .

[26]  Margaret L. Gardel,et al.  Giant dielectric constant response in a copper-titanate , 2000 .

[27]  Y. Chiang,et al.  Origin of Solid‐State Activated Sintering in Bi2O3‐Doped ZnO , 1999 .

[28]  Y. Chiang,et al.  Space Charge Segregation at Grain Boundaries in Titanium Dioxide: I, Relationship between Lattice Defect Chemistry and Space Charge Potential , 1993 .

[29]  Y. Chiang,et al.  Space Charge Segregation at Grain Boundaries in Titanium Dioxide: II, Model Experiments , 1993 .

[30]  R. M. Cannon,et al.  Statistical analysis of the intergranular film thickness in silicon nitride ceramics , 1993 .

[31]  R. M. Cannon,et al.  Space charge, elastic field, and dipole contributions to equilibrium solute segregation at interfaces , 1983 .

[32]  E. D. Hondros,et al.  Segregation to interfaces , 1977 .

[33]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[34]  J. Blakely,et al.  Origin of equilibrium space charge potentials in ionic crystals , 1969 .

[35]  K. L. Kliewer Space charge in ionic crystals—III. Silver halides containing divalent cations , 1966 .

[36]  K. L. Kliewer Space charge in ionic crystals-IV. interstitial-producing impurities in the silver halides , 1966 .

[37]  J. Koehler,et al.  Space Charge in Ionic Crystals. I. General Approach with Application to NaCl , 1965 .

[38]  K. L. Kliewer Space Charge in Ionic Crystals. II. The Electron Affinity and Impurity Accumulation , 1965 .

[39]  K. Lehovec Space‐Charge Layer and Distribution of Lattice Defects at the Surface of Ionic Crystals , 1953 .

[40]  H. S. Green,et al.  A Kinetic Theory of Liquids , 1947, Nature.

[41]  A. Tomsia,et al.  Ceramic microstructures : control at the atomic level , 1998 .

[42]  H. Grabke Segregation at Interfaces , 1987 .

[43]  D. Clarke On the Equilibrium Thickness of Intergranular Glass Phases in Ceramic Materials , 1987 .

[44]  J. Frankel Kinetic theory of liquids , 1946 .