How to Walk Your Dog in the Mountains with No Magic Leash

We describe a $$O(\log n )$$O(logn)-approximation algorithm for computing the homotopic Fréchet distance between two polygonal curves that lie on the boundary of a triangulated topological disk. Prior to this work, algorithms were known only for curves on the Euclidean plane with polygonal obstacles. A key technical ingredient in our analysis is a $$O(\log n)$$O(logn)-approximation algorithm for computing the minimum height of a homotopy between two curves. No algorithms were previously known for approximating this parameter. Surprisingly, it is not even known if computing either the homotopic Fréchet distance, or the minimum height of a homotopy, is in NP.

[1]  M. Fréchet Sur la distance de deux surfaces , .

[2]  Richard Edwin Stearns,et al.  Memory bounds for recognition of context-free and context-sensitive languages , 1965, SWCT.

[3]  R. Tarjan,et al.  A Separator Theorem for Planar Graphs , 1977 .

[4]  Joseph S. B. Mitchell,et al.  The Discrete Geodesic Problem , 1987, SIAM J. Comput..

[5]  Jean-Marc Vézien,et al.  Piecewise surface flattening for non-distorted texture mapping , 1991, SIGGRAPH.

[6]  Helmut Alt,et al.  Computing the Fréchet distance between two polygonal curves , 1995, Int. J. Comput. Geom. Appl..

[7]  Boris Aronov,et al.  Star Unfolding of a Polytope with Applications , 1997, SIAM J. Comput..

[8]  Michael S. Floater,et al.  Parametrization and smooth approximation of surface triangulations , 1997, Comput. Aided Geom. Des..

[9]  Philip N. Klein,et al.  Faster Shortest-Path Algorithms for Planar Graphs , 1997, J. Comput. Syst. Sci..

[10]  Eamonn J. Keogh,et al.  Scaling up Dynamic Time Warping to Massive Dataset , 1999, PKDD.

[11]  M. Godau On the complexity of measuring the similarity between geometric objects in higher dimensions , 1999 .

[12]  E. Sturler,et al.  Surface Parameterization for Meshing by Triangulation Flattenin , 2000 .

[13]  Dan Piponi,et al.  Seamless texture mapping of subdivision surfaces by model pelting and texture blending , 2000, SIGGRAPH.

[14]  Leonidas J. Guibas,et al.  New Similarity Measures between Polylines with Applications to Morphing and Polygon Sweeping , 2002, Discret. Comput. Geom..

[15]  Sang-Wook Kim,et al.  Optimization of subsequence matching under time warping in time-series databases , 2005, SAC '05.

[16]  Maike Buchin,et al.  Semi-computability of the Fréchet distance between surfaces , 2005, EuroCG.

[17]  Dieter Pfoser,et al.  On Map-Matching Vehicle Tracking Data , 2005, VLDB.

[18]  Dieter Pfoser,et al.  Addressing the Need for Map-Matching Speed: Localizing Global Curve-Matching Algorithms , 2006, 18th International Conference on Scientific and Statistical Database Management (SSDBM'06).

[19]  Thomas Devogele,et al.  Coastline Matching Process Based on the Discrete Fréchet Distance , 2006 .

[20]  Joachim Gudmundsson,et al.  Detecting Commuting Patterns by Clustering Subtrajectories , 2008, Int. J. Comput. Geom. Appl..

[21]  Xavier Serra,et al.  Chroma Binary Similarity and Local Alignment Applied to Cover Song Identification , 2008, IEEE Transactions on Audio, Speech, and Language Processing.

[22]  Joachim Gudmundsson,et al.  Detecting single file movement , 2008, GIS '08.

[23]  Peter Winkler,et al.  Submodular Percolation , 2009, SIAM J. Discret. Math..

[24]  Erin W. Chambers,et al.  On the Height of a Homotopy , 2009, CCCG.

[25]  Erin W. Chambers,et al.  Homotopic Fréchet distance between curves or, walking your dog in the woods in polynomial time , 2010, Comput. Geom..

[26]  Atlas F. Cook,et al.  Geodesic Fréchet distance inside a simple polygon , 2010, TALG.

[27]  Sariel Har-Peled,et al.  Computing the Fréchet Distance between Folded Polygons , 2011, WADS.

[28]  Erin W. Chambers,et al.  Isotopic Fréchet Distance , 2011, CCCG.

[29]  Sariel Har-Peled,et al.  The frechet distance revisited and extended , 2011, SoCG '11.

[30]  Amir Nayyeri,et al.  How to Walk Your Dog in the Mountains with No Magic Leash , 2012, Discrete & Computational Geometry.

[31]  Atlas F. Cook,et al.  Shortest Path Problems on a Polyhedral Surface , 2012, Algorithmica.

[32]  Sariel Har-Peled,et al.  Approximating the Fréchet Distance for Realistic Curves in Near Linear Time , 2012, Discret. Comput. Geom..

[33]  Erin W. Chambers,et al.  Measuring similarity between curves on 2-manifolds via homotopy area , 2013, SoCG '13.

[34]  Gregory R. Chambers,et al.  Contracting loops on a Riemannian 2-surface , 2013 .

[35]  P. Papasoglu Contracting thin disks , 2013, Journal of Topology and Analysis.

[36]  Carola Wenk,et al.  Simple Curve Embedding , 2013, ArXiv.

[37]  Bettina Speckmann,et al.  Computing the Fréchet distance with shortcuts is NP-hard , 2014, Symposium on Computational Geometry.