How to Walk Your Dog in the Mountains with No Magic Leash
暂无分享,去创建一个
Amir Nayyeri | Sariel Har-Peled | Mohammad R. Salavatipour | Anastasios Sidiropoulos | Sariel Har-Peled | M. Salavatipour | Anastasios Sidiropoulos | A. Nayyeri
[1] M. Fréchet. Sur la distance de deux surfaces , .
[2] Richard Edwin Stearns,et al. Memory bounds for recognition of context-free and context-sensitive languages , 1965, SWCT.
[3] R. Tarjan,et al. A Separator Theorem for Planar Graphs , 1977 .
[4] Joseph S. B. Mitchell,et al. The Discrete Geodesic Problem , 1987, SIAM J. Comput..
[5] Jean-Marc Vézien,et al. Piecewise surface flattening for non-distorted texture mapping , 1991, SIGGRAPH.
[6] Helmut Alt,et al. Computing the Fréchet distance between two polygonal curves , 1995, Int. J. Comput. Geom. Appl..
[7] Boris Aronov,et al. Star Unfolding of a Polytope with Applications , 1997, SIAM J. Comput..
[8] Michael S. Floater,et al. Parametrization and smooth approximation of surface triangulations , 1997, Comput. Aided Geom. Des..
[9] Philip N. Klein,et al. Faster Shortest-Path Algorithms for Planar Graphs , 1997, J. Comput. Syst. Sci..
[10] Eamonn J. Keogh,et al. Scaling up Dynamic Time Warping to Massive Dataset , 1999, PKDD.
[11] M. Godau. On the complexity of measuring the similarity between geometric objects in higher dimensions , 1999 .
[12] E. Sturler,et al. Surface Parameterization for Meshing by Triangulation Flattenin , 2000 .
[13] Dan Piponi,et al. Seamless texture mapping of subdivision surfaces by model pelting and texture blending , 2000, SIGGRAPH.
[14] Leonidas J. Guibas,et al. New Similarity Measures between Polylines with Applications to Morphing and Polygon Sweeping , 2002, Discret. Comput. Geom..
[15] Sang-Wook Kim,et al. Optimization of subsequence matching under time warping in time-series databases , 2005, SAC '05.
[16] Maike Buchin,et al. Semi-computability of the Fréchet distance between surfaces , 2005, EuroCG.
[17] Dieter Pfoser,et al. On Map-Matching Vehicle Tracking Data , 2005, VLDB.
[18] Dieter Pfoser,et al. Addressing the Need for Map-Matching Speed: Localizing Global Curve-Matching Algorithms , 2006, 18th International Conference on Scientific and Statistical Database Management (SSDBM'06).
[19] Thomas Devogele,et al. Coastline Matching Process Based on the Discrete Fréchet Distance , 2006 .
[20] Joachim Gudmundsson,et al. Detecting Commuting Patterns by Clustering Subtrajectories , 2008, Int. J. Comput. Geom. Appl..
[21] Xavier Serra,et al. Chroma Binary Similarity and Local Alignment Applied to Cover Song Identification , 2008, IEEE Transactions on Audio, Speech, and Language Processing.
[22] Joachim Gudmundsson,et al. Detecting single file movement , 2008, GIS '08.
[23] Peter Winkler,et al. Submodular Percolation , 2009, SIAM J. Discret. Math..
[24] Erin W. Chambers,et al. On the Height of a Homotopy , 2009, CCCG.
[25] Erin W. Chambers,et al. Homotopic Fréchet distance between curves or, walking your dog in the woods in polynomial time , 2010, Comput. Geom..
[26] Atlas F. Cook,et al. Geodesic Fréchet distance inside a simple polygon , 2010, TALG.
[27] Sariel Har-Peled,et al. Computing the Fréchet Distance between Folded Polygons , 2011, WADS.
[28] Erin W. Chambers,et al. Isotopic Fréchet Distance , 2011, CCCG.
[29] Sariel Har-Peled,et al. The frechet distance revisited and extended , 2011, SoCG '11.
[30] Amir Nayyeri,et al. How to Walk Your Dog in the Mountains with No Magic Leash , 2012, Discrete & Computational Geometry.
[31] Atlas F. Cook,et al. Shortest Path Problems on a Polyhedral Surface , 2012, Algorithmica.
[32] Sariel Har-Peled,et al. Approximating the Fréchet Distance for Realistic Curves in Near Linear Time , 2012, Discret. Comput. Geom..
[33] Erin W. Chambers,et al. Measuring similarity between curves on 2-manifolds via homotopy area , 2013, SoCG '13.
[34] Gregory R. Chambers,et al. Contracting loops on a Riemannian 2-surface , 2013 .
[35] P. Papasoglu. Contracting thin disks , 2013, Journal of Topology and Analysis.
[36] Carola Wenk,et al. Simple Curve Embedding , 2013, ArXiv.
[37] Bettina Speckmann,et al. Computing the Fréchet distance with shortcuts is NP-hard , 2014, Symposium on Computational Geometry.