ANP and urodilatin: who is who in the kidney.

Mounting evidence suggests that urodilatin, not atrial natriuretic peptide (ANP) is the responsible peptide in regulation of renal Na superset+- and water homeostasis. Following the discovery of ANP this peptide was thought to be responsible for the induction of natriuresis and diuresis in the mammalian kidney. However, the isolation of urodilatin from human urine and substantial work contributed to a better understanding of the renal physiology of these two natriuretic peptides. Indeed, subsequent elucidation supported that urodilatin rather than ANP seems to be the natriuretic peptide responsible for the regulation of Na superset+- and water homeostasis in the kidney. Urodilatin - synthesized and secreted from the distal tubules of the kidney - may act as a paracrine mediator when secreted into the lumen. In contrast, while the role of ANP as regulator of the cardiovascular system is established, its physiological regulatory role on transport processes in the nephron is questionable. This review attempts to analyze the roles of both ANP and urodilatin and to discuss new potential candidates which may also play a role in electrolyte and water handling in the kidney.

[1]  L. Forte,et al.  Interaction of atrial natriuretic peptide, urodilatin, guanylin and uroguanylin in the isolated perfused rat kidney , 2006, Regulatory Peptides.

[2]  E. Schlatter,et al.  Cellular effects of guanylin and uroguanylin. , 2006, Journal of the American Society of Nephrology : JASN.

[3]  A. Velic,et al.  Guanylin and uroguanylin regulate electrolyte transport in isolated human cortical collecting ducts. , 2005, Kidney international.

[4]  M. Majowicz,et al.  Atrial natriuretic peptide and endothelin-3 target renal sodium-glucose cotransporter , 2003, Peptides.

[5]  E. Schlatter,et al.  Signaling and distribution of NPR-Bi, the human splice form of the natriuretic peptide receptor type B. , 2003, American journal of physiology. Renal physiology.

[6]  E. Schlatter,et al.  Genistein Potentiates the ANP Effect on a K+-Conductance in HEK-293 Cells , 2003, Cellular Physiology and Biochemistry.

[7]  J. Hirano,et al.  Protein kinase G activates inwardly rectifying K(+) channel in cultured human proximal tubule cells. , 2002, American journal of physiology. Renal physiology.

[8]  M. Kuhn,et al.  Guanylin, Uroguanylin, and Heat-stable Euterotoxin Activate Guanylate Cyclase C and/or a Pertussis Toxin-sensitive G Protein in Human Proximal Tubule Cells* , 2002, The Journal of Biological Chemistry.

[9]  J. Bełtowski Guanylin and related peptides. , 2001, Journal of physiology and pharmacology : an official journal of the Polish Physiological Society.

[10]  H. Völkl,et al.  Regulation of the renal type IIa Na/Pi cotransporter by cGMP , 2001, Pflügers Archiv.

[11]  M. Kruhøffer,et al.  Cellular localization, membrane distribution, and possible function of guanylyl cyclases A and 1 in collecting ducts of rat. , 2001, Cardiovascular research.

[12]  E. Schlatter,et al.  cGMP Serves as an Extracellular Regulator of a Ca2+-Dependent K+ Channel in Immortalized Human Proximal Tubule Cells , 2001, Cellular Physiology and Biochemistry.

[13]  F. Curcio,et al.  Natriuretic peptides increase cAMP production in human thyrocytes via the natriuretic peptide clearance receptor (NPR-C) , 2001, Regulatory Peptides.

[14]  C. Bailly Effect of luminal atrial natriuretic peptide on chloride reabsorption in mouse cortical thick ascending limb: inhibition by endothelin. , 2000, Journal of the American Society of Nephrology : JASN.

[15]  P. Deen,et al.  Defective Processing and Trafficking of Water Channels in Nephrogenic Diabetes insipidus , 2000, Nephron Experimental Nephrology.

[16]  S. Waldman,et al.  Guanylyl cyclases and signaling by cyclic GMP. , 2000, Pharmacological reviews.

[17]  M. Berlan,et al.  Natriuretic peptides: a new lipolytic pathway in human adipocytes , 2000, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[18]  H. Zhou,et al.  G(i-1)/G(i-2)-dependent signaling by single-transmembrane natriuretic peptide clearance receptor. , 2000, American journal of physiology. Gastrointestinal and liver physiology.

[19]  H. Brismar,et al.  MECHANISMS BY WHICH INTRARENAL DOPAMINE AND ANP INTERACT TO REGULATE SODIUM METABOLISM , 2000, Clinical and experimental hypertension.

[20]  L. Forte,et al.  Renal effects of uroguanylin and guanylin in vivo. , 1999, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas.

[21]  E. Schlatter,et al.  A novel cGMP‐regulated K+ channel in immortalized human kidney epithelial cells (IHKE‐1) , 1999, The Journal of physiology.

[22]  K. S. Murthy,et al.  Identification of the G Protein-activating Domain of the Natriuretic Peptide Clearance Receptor (NPR-C)* , 1999, The Journal of Biological Chemistry.

[23]  M. Marletta,et al.  Guanylate cyclase and the .NO/cGMP signaling pathway. , 1999, Biochimica et biophysica acta.

[24]  M. Kruhøffer,et al.  cGMP-dependent and -independent inhibition of a K+ conductance by natriuretic peptides: molecular and functional studies in human proximal tubule cells. , 1999, Journal of the American Society of Nephrology : JASN.

[25]  G. Makhlouf,et al.  G protein-dependent activation of smooth muscle eNOS via natriuretic peptide clearance receptor. , 1998, American journal of physiology. Cell physiology.

[26]  R. Gerzer,et al.  The renal natriuretic peptide urodilatin is present in human kidney. , 1998, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association.

[27]  W. Forssmann,et al.  The endocrine heart and natriuretic peptides: histochemistry, cell biology, and functional aspects of the renal urodilatin system , 1998, Histochemistry and Cell Biology.

[28]  A. Hobbs Soluble guanylate cyclase: the forgotten sibling. , 1997, Trends in pharmacological sciences.

[29]  W. Forssmann,et al.  Natriuresis after cardiopulmonary bypass: relationship to urodilatin, atrial natriuretic factor, antidiuretic hormone, and aldosterone. , 1997, The Journal of thoracic and cardiovascular surgery.

[30]  S. Hebert,et al.  Phospholipase A2 is involved in mediating the effect of extracellular Ca2+ on apical K+ channels in rat TAL. , 1997, The American journal of physiology.

[31]  L. Forte,et al.  The guanylin and uroguanylin peptide hormones and their receptors. , 1997, Acta anatomica.

[32]  M. Kuhn,et al.  cGMP-activating peptides do not regulate electrogenic electrolyte transport in principal cells of rat CCD. , 1996, The American journal of physiology.

[33]  B. Assael,et al.  Regulation of sodium-potassium-adenosine-triphosphatase activity by extracellular guanosine 3', 5'-cyclic monophosphate in rat kidney. , 1996, Acta physiologica Scandinavica.

[34]  S. Shin,et al.  Increased renal atrial natriuretic peptide synthesis in rats with deoxycorticosterone acetate-salt treatment. , 1996, The American journal of physiology.

[35]  G. Rechkemmer,et al.  Urodilatin is involved in sodium homeostasis and exerts sodium-state-dependent natriuretic and diuretic effects. , 1996, The American journal of physiology.

[36]  M. Anand-Srivastava,et al.  Cytoplasmic Domain of Natriuretic Peptide Receptor-C Inhibits Adenylyl Cyclase , 1996, The Journal of Biological Chemistry.

[37]  M. Humphreys,et al.  Phosphodiesterase activity as a mediator of renal resistance to ANP in pathological salt retention. , 1996, The American journal of physiology.

[38]  D. Loo,et al.  Regulation of Na+/Glucose Cotransporter Expression by Protein Kinases in Xenopus laevis Oocytes* , 1996, The Journal of Biological Chemistry.

[39]  G. Koh,et al.  Molecular Determinants of the Clearance Function of Type C Receptors of Natriuretic Peptides (*) , 1996, The Journal of Biological Chemistry.

[40]  R. Gerzer,et al.  Natriuresis caused by increased carotid Na+ concentration after renal denervation. , 1996, The American journal of physiology.

[41]  R. Kleta,et al.  Natriuretic peptides increase a K+ conductance in rat mesangial cells , 1996, Pflügers Archiv.

[42]  R. Gerzer,et al.  Postprandial natriuresis in humans: further evidence that urodilatin, not ANP, modulates sodium excretion. , 1996, The American journal of physiology.

[43]  K. Kangawa,et al.  A new type soluble guanylyl cyclase, which contains a kinase-like domain: its structure and expression. , 1995, Biochemical and biophysical research communications.

[44]  K. Kurihara,et al.  Identification of novel guanylyl cyclases from chemosensory tissues of rat and cattle. , 1995, Biochemical and biophysical research communications.

[45]  W. Forssmann,et al.  Release of urodilatin from perfused rat kidney and from cultured neonatal rat kidney cells , 1995, Pflügers Archiv.

[46]  K. Endlich,et al.  Effects of urodilatin in the rat kidney: comparison with ANF and interaction with vasoactive substances. , 1995, Kidney international.

[47]  R. Axel,et al.  A receptor guanylyl cyclase expressed specifically in olfactory sensory neurons. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[48]  N. Darvish,et al.  A novel cGMP-activated Cl- channel in renal proximal tubules. , 1995, The American journal of physiology.

[49]  D. Garbers,et al.  Two membrane forms of guanylyl cyclase found in the eye. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[50]  P. Greengard,et al.  Activation/deactivation of renal Na+,K+‐ATPase: a final common pathway for regulation of natriuresis , 1994, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[51]  R. Gerzer,et al.  Long-term elevations of dietary sodium produce parallel increases in the renal excretion of urodilatin and sodium , 1993, Pflügers Archiv.

[52]  R. Gerzer,et al.  Development and application of a urodilatin (CDD/ANP-95#x2013;126)-specific radioimmunoassay , 1993, Pflügers Archiv.

[53]  P. Norsk,et al.  Effect of water immersion on renal natriuretic peptide (urodilatin) excretion in humans. , 1993, Journal of applied physiology.

[54]  M. Schambelan,et al.  Urodilatin binds to and activates renal receptors for atrial natriuretic peptide. , 1993, Hypertension.

[55]  F. Marumo,et al.  Effect of urodilatin on cGMP accumulation in the kidney. , 1993, Journal of the American Society of Nephrology : JASN.

[56]  P. Rotwein,et al.  Renal expression of the gene for atrial natriuretic factor. , 1992, The American journal of physiology.

[57]  J. Chao,et al.  Localization, synthetic regulation, and biology of renal atriopeptin-like prohormone. , 1992, The American journal of physiology.

[58]  R. Gerzer,et al.  Effects of an acute saline infusion on fluid and electrolyte metabolism in humans. , 1992, The American journal of physiology.

[59]  J. Beavo,et al.  Regulation and function of cyclic nucleotides , 1992, Current Biology.

[60]  R. Gerzer,et al.  Roles of cephalic Na+ concentration and urodilatin in control of renal Na+ excretion. , 1992, The American journal of physiology.

[61]  R. Gerzer,et al.  Evidence that urodilatin, rather than ANP, regulates renal sodium excretion. , 1990, Journal of the American Society of Nephrology : JASN.

[62]  T. Dousa,et al.  ANP inhibits Na(+)-H+ antiport in proximal tubular brush border membrane: role of dopamine. , 1990, Kidney international.

[63]  D. Garbers,et al.  Guanylyl cyclase is a heat-stable enterotoxin receptor , 1990, Cell.

[64]  J. Leppäluoto,et al.  Atrial natriuretic peptide, renin activity, aldosterone, urine volume and electrolytes during a 24-h sleep-wake cycle in man. , 1990, Acta physiologica Scandinavica.

[65]  E. Schwiebert,et al.  Atrial natriuretic peptide inhibits a cation channel in renal inner medullary collecting duct cells. , 1989, Science.

[66]  P. Schulz-Knappe,et al.  Isolation and structural analysis of “Urodilatin”, a new peptide of the cardiodilatin-(ANP)-family, extracted from human urine , 1988, Klinische Wochenschrift.

[67]  P. Harris,et al.  Atrial natriuretic peptide inhibits angiotensin-stimulated proximal tubular sodium and water reabsorption , 1987, Nature.

[68]  F. Morel,et al.  Atrial natriuretic peptide effects on cGMP and cAMP contents in microdissected glomeruli and segments of the rat and rabbit nephrons , 1987, Pflügers Archiv.

[69]  J. Fleming,et al.  Atrial natriuretic peptide causes pre-glomerular vasodilatation and post-glomerular vasoconstriction in rat kidney , 1986, Nature.

[70]  B. Brenner,et al.  Renal and Systemic Hemodynamic Effects of Synthetic Atrial Natriuretic Peptide in the Anesthetized Rat , 1986, Circulation research.

[71]  J. López-Novoa,et al.  Systemic and regional haemodynamic effects of a synthetic atrial natriuretic peptide in conscious rats. , 1986, Clinical science.

[72]  T. Schwab,et al.  Role of atrial natriuretic peptide in volume-expansion natriuresis. , 1986, The American journal of physiology.

[73]  B. Brenner,et al.  Atrial peptides inhibit oxygen consumption in kidney medullary collecting duct cells. , 1986, The American journal of physiology.

[74]  J. H. Stein,et al.  Effect of atriopeptin II on determinants of glomerular filtration rate in the in vitro perfused dog glomerulus. , 1986, The American journal of physiology.

[75]  B. C. Wang,et al.  Atrial stretch increases sodium excretion independently of release of atrial peptides. , 1986, The American journal of physiology.

[76]  M. Yasujima,et al.  Effects of human atrial natriuretic peptide on renal function and vasopressin release. , 1986, The American journal of physiology.

[77]  R. Anderson,et al.  Inhibition of vasopressin action by atrial natriuretic factor. , 1986, Science.

[78]  M. Cantin,et al.  Distribution of atrial natriuretic factor receptors in dog kidney fractions , 1985, FEBS letters.

[79]  B. Brenner,et al.  Physiologic regulation of atrial natriuretic peptide receptors in rat renal glomeruli. , 1985, The Journal of clinical investigation.

[80]  S. G. Smith,et al.  Renal and systemic effects of synthetic atrial natriuretic factor. , 1985, Life sciences.

[81]  K. Kangawa,et al.  Purification and complete amino acid sequence of α-human atrial natriuretic polypeptide (α-hANP) , 1984 .

[82]  T. Flynn,et al.  The amino acid sequence of an atrial peptide with potent diuretic and natriuretic properties. , 1983, Biochemical and biophysical research communications.

[83]  M. Currie,et al.  Bioactive cardiac substances: potent vasorelaxant activity in mammalian atria. , 1983, Science.

[84]  A. D. de Bold,et al.  A rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rats. , 1981, Life sciences.

[85]  Lockett Mf A hormonal influence of the heart on the kidney. , 1969 .

[86]  V. Mutt,et al.  The right auricle of the heart is an endocrine organ , 2004, Anatomy and Embryology.

[87]  E. Wright,et al.  Renal Na(+)-glucose cotransporters. , 2001, American journal of physiology. Renal physiology.

[88]  R. Gerzer,et al.  Regulation of natriuretic peptide (urodilatin) release in a human kidney cell line. , 1999, Kidney international.

[89]  D. Garbers,et al.  Guanylyl cyclase receptors. , 1994, The Journal of biological chemistry.

[90]  C. Figueroa,et al.  Cellular localisation of atrial natriuretic factor in the human kidney. , 1990, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association.

[91]  M. Knepper,et al.  ANF inhibits NaCl and fluid absorption in cortical collecting duct of rat kidney. , 1989, The American journal of physiology.

[92]  K. Goetz Physiology and pathophysiology of atrial peptides. , 1988, The American journal of physiology.

[93]  K. Kangawa,et al.  Purification and complete amino acid sequence of alpha-human atrial natriuretic polypeptide (alpha-hANP). , 1984, Biochemical and biophysical research communications.

[94]  M. Lockett A hormonal influence of the heart on the kidney. , 1969, Israel journal of medical sciences.