Assessment of available rangeland woody plant biomass with a terrestrial lidar system.

[1]  M. Fournier,et al.  The use of terrestrial LiDAR technology in forest science: application fields, benefits and challenges , 2011, Annals of Forest Science.

[2]  J. Gong,et al.  3D Building Model Reconstruction from Multi-view Aerial Imagery and Lidar Data , 2011 .

[3]  Zongyue Wang,et al.  Distributed data organization and parallel data retrieval methods for huge laser scanner point clouds , 2011, Comput. Geosci..

[4]  Zhou Dongbo An Efficient 3D R-tree Extension Method Concerned with Levels of Detail , 2011 .

[5]  J. Garbaye Exploratory workshop on diversity and function in ectomycorrhizal communities , 2011, Annals of Forest Science.

[6]  Susanne Bleisch,et al.  Rich point clouds in virtual globes - A new paradigm in city modeling? , 2010, Comput. Environ. Urban Syst..

[7]  Borut Zalik,et al.  Visualization of LIDAR datasets using point-based rendering technique , 2010, Comput. Geosci..

[8]  M. Castellano,et al.  Structural biomass partitioning in regrowth and undisturbed mesquite (Prosopis glandulosa): implications for bioenergy uses , 2010 .

[9]  T. Pock,et al.  Point Clouds: Lidar versus 3D Vision , 2010 .

[10]  George Vosselman,et al.  Knowledge based reconstruction of building models from terrestrial laser scanning data , 2009 .

[11]  Alan H. Strahler,et al.  Retrieval of forest structural parameters using a ground-based lidar instrument (Echidna®) , 2008 .

[12]  Hans-Peter Seidel,et al.  Processing and interactive editing of huge point clouds from 3D scanners , 2008, Comput. Graph..

[13]  S. Popescu,et al.  A voxel-based lidar method for estimating crown base height for deciduous and pine trees , 2008 .

[14]  Hans-Gerd Maas,et al.  Automatic forest inventory parameter determination from terrestrial laser scanner data , 2008 .

[15]  He Yongjian Organization and Indexing Method for 3D Points Cloud Data , 2008 .

[16]  Sarah Smith-Voysey,et al.  Geometric validation of a ground-based mobile laser scanning system , 2008 .

[17]  S. Popescu Estimating biomass of individual pine trees using airborne lidar , 2007 .

[18]  Qing Zhu,et al.  An efficient 3D R-tree spatial index method for virtual geographic environments , 2007 .

[19]  I. Jonckheere,et al.  Influence of measurement set-up of ground-based LiDAR for derivation of tree structure , 2006 .

[20]  P. Radtke,et al.  Ground-based Laser Imaging for Assessing Three-dimensional Forest Canopy Structure , 2006 .

[21]  P. Gong,et al.  Isolating individual trees in a savanna woodland using small footprint lidar data , 2006 .

[22]  P. Radtke,et al.  Detailed Stem Measurements of Standing Trees from Ground-Based Scanning Lidar , 2006, Forest Science.

[23]  Juha Hyyppä,et al.  Identifying and quantifying structural characteristics of heterogeneous boreal forests using laser scanner data , 2005 .

[24]  S. Archer,et al.  Above-ground biomass and carbon and nitrogen content of woody species in a subtropical thornscrub parkland , 2005 .

[25]  T. Dawson,et al.  Quantifying forest above ground carbon content using LiDAR remote sensing , 2004 .

[26]  E. Næsset Practical large-scale forest stand inventory using a small-footprint airborne scanning laser , 2004 .

[27]  C. Hopkinson,et al.  Assessing forest metrics with a ground-based scanning lidar , 2004 .

[28]  R. Forman Some general principles of landscape and regional ecology , 1995, Landscape Ecology.

[29]  S. Popescu,et al.  Measuring individual tree crown diameter with lidar and assessing its influence on estimating forest volume and biomass , 2003 .

[30]  R. Birdsey,et al.  National-Scale Biomass Estimators for United States Tree Species , 2003, Forest Science.

[31]  W. Cohen,et al.  Lidar Remote Sensing for Ecosystem Studies , 2002 .

[32]  E. Næsset,et al.  Estimating tree heights and number of stems in young forest stands using airborne laser scanner data , 2001 .

[33]  Marc Levoy,et al.  QSplat: a multiresolution point rendering system for large meshes , 2000, SIGGRAPH.

[34]  Matthias Zwicker,et al.  Surfels: surface elements as rendering primitives , 2000, SIGGRAPH.

[35]  O. V. Auken Shrub Invasions of North American Semiarid Grasslands , 2000 .

[36]  S. Zlatanova 3D GIS for urban development , 2000 .

[37]  W. Cohen,et al.  Surface lidar remote sensing of basal area and biomass in deciduous forests of eastern Maryland, USA , 1999 .

[38]  S. Magnussen,et al.  Derivations of stand heights from airborne laser scanner data with canopy-based quantile estimators , 1998 .

[39]  T. Tietema,et al.  Biomass determination of fuelwood trees and bushes of Botswana, Southern Africa , 1993 .

[40]  Ross Nelson,et al.  Estimating forest biomass and volume using airborne laser data , 1988 .

[41]  P. Felker Economic, Environmental, and Social Advantages of Intensively Managed Short Rotation Mesquite (Prosopis spp) Biomass Energy Farms , 1984 .

[42]  D. Sprugel,et al.  Correcting for Bias in Log‐Transformed Allometric Equations , 1983 .

[43]  P. Felker,et al.  Biomass estimation in a young stand of mesquite (Prosopis spp.), ironwood (Olneya tesota), palo verde (Cercidium floridium, and Parkinsonia aculeata), and leucaena (Leucaena leucocephala). , 1982 .

[44]  E. L. Little Atlas of United States trees. Volume 3. Minor western hardwoods. , 1978 .

[45]  R. R. Hocking The analysis and selection of variables in linear regression , 1976 .

[46]  R. Ansley,et al.  Long-term grass yields following chemical control of honey mesquite , 1976 .

[47]  G. Baskerville Use of Logarithmic Regression in the Estimation of Plant Biomass , 1972 .

[48]  D. J. Finney On the Distribution of a Variate Whose Logarithm is Normally Distributed , 1941 .