A MapReduce framework to improve template matching uncertainty

Normalized cross-correlation template matching is used as a detection method in many scientific domains. To be practical, template matching must scale to large datasets while handling ambiguity, uncertainty, and noisy data. We propose a novel approach based on Dempster-Shafer (DS) Theory and MapReduce parallelism. DS Theory addresses conflicts between data sources, noisy data, and uncertainty, but is traditionally serial. However, we use the commutative and associative nature of Dempster's Combination Rule to perform a parallel computation of DS masses and a logarithmic hierarchical fusion of these DS masses. This parallelism is particularly important because additional data sources allow DS-based template matching to maintain accuracy and refine uncertainty in the face of noisy data. We validate the parallelism, accuracy, and uncertainty of our implementation as a function of the size and noise of the input dataset, finding that it scales linearly and can retain accuracy and improve uncertainty in the face of noise for large datasets.

[1]  Carlo Curino,et al.  Apache Hadoop YARN: yet another resource negotiator , 2013, SoCC.

[2]  Raymond H. Chan,et al.  Salt-and-pepper noise removal by median-type noise detectors and detail-preserving regularization , 2005, IEEE Transactions on Image Processing.

[3]  Inad Aljarrah,et al.  OBJECT RECOGNITION SYSTEM USING TEMPLATE MATCHING BASED ONSIGNATURE AND PRINCIPAL COMPONENT ANALYSIS , 2012 .

[4]  Rakowsky Uwe Kay,et al.  Fundamentals of the Dempster-Shafer theory and its applications to system safety and reliability modelling , 2007 .

[5]  Linda G. Shapiro,et al.  Computer and Robot Vision , 1991 .

[6]  Jae-Gil Lee,et al.  Scalable community detection from networks by computing edge betweenness on MapReduce , 2014, 2014 International Conference on Big Data and Smart Computing (BIGCOMP).

[7]  D. S. Moore,et al.  The Basic Practice of Statistics , 2001 .

[8]  Jun-Wei Hsieh,et al.  Scale and skew‐invariant road sign recognition , 2007, Int. J. Imaging Syst. Technol..

[9]  I. Jekova,et al.  QRS Template Matching for Recognition of Ventricular Ectopic Beats , 2007, Annals of Biomedical Engineering.

[10]  Anil Kumar,et al.  Template Matching Application In Geo-Referencing Of Remote Sensing Temporal Image , 2014 .

[11]  Jürgen Schmidhuber,et al.  Multi-column deep neural networks for image classification , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[12]  Sanjay Ghemawat,et al.  MapReduce: Simplified Data Processing on Large Clusters , 2004, OSDI.

[13]  Thorsten Last,et al.  Multi-component based cross correlation beat detection in electrocardiogram analysis , 2004, Biomedical engineering online.

[14]  Neil M. Schmitt,et al.  QRS Detection By Template Matching Using Real‐Time Correlation On A Microcomputer , 1984 .

[15]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[16]  Lassina Zerbo,et al.  Perspectives of cross correlation in seismic monitoring at the International Data Centre , 2011 .

[17]  Eric Lefevre,et al.  Belief function combination and conflict management , 2002, Inf. Fusion.

[18]  Douglas A. Dodge,et al.  Large-scale seismic signal analysis with Hadoop , 2014, Comput. Geosci..

[19]  Sandeep Koranne,et al.  Boost C++ Libraries , 2011 .

[20]  Jinho Kim,et al.  MRDataCube: Data cube computation using MapReduce , 2015, 2015 International Conference on Big Data and Smart Computing (BIGCOMP).

[21]  E. Zagrouba,et al.  Estimation of mass function in evidence theory for fusion of gray level based images , 2010, ICSES 2010 International Conference on Signals and Electronic Circuits.

[22]  Kamal Premaratne,et al.  Correlation coefficient based template matching: Accounting for uncertainty in selecting the winner , 2015, 2015 18th International Conference on Information Fusion (Fusion).

[23]  Nicholas J. Napoli The Detection of Analytes Using Spectroscopy: A Dempster-Shafer Approach , 2014 .

[24]  Charless C. Fowlkes,et al.  Do We Need More Training Data or Better Models for Object Detection? , 2012, BMVC.

[25]  Uwe D. Hanebeck,et al.  Template matching using fast normalized cross correlation , 2001, SPIE Defense + Commercial Sensing.

[26]  Christoforos E. Kozyrakis,et al.  Evaluating MapReduce for Multi-core and Multiprocessor Systems , 2007, 2007 IEEE 13th International Symposium on High Performance Computer Architecture.

[27]  Yike Guo,et al.  Optimising parallel R correlation matrix calculations on gene expression data using MapReduce , 2014, BMC Bioinformatics.

[28]  Hairong Kuang,et al.  The Hadoop Distributed File System , 2010, 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST).

[29]  Laura Painton Swiler,et al.  Epistemic Uncertainty Quantification Tutorial , 2008 .

[30]  Emanuele Trucco,et al.  Computer and Robot Vision , 1995 .

[31]  Kari Sentz,et al.  Combination of Evidence in Dempster-Shafer Theory , 2002 .

[32]  Dong Yu,et al.  Deep Convex Net: A Scalable Architecture for Speech Pattern Classification , 2011, INTERSPEECH.

[33]  Hafiz Imtiaz,et al.  A template matching approach of one-shot-learning gesture recognition , 2013, Pattern Recognit. Lett..

[34]  Christine Fernandez-Maloigne,et al.  3D Segmentation of MR Brain Images into White Matter, Gray Matter and Cerebro-Spinal Fluid by Means of Evidence Theory , 2003, AIME.

[35]  Chang Wook Ahn,et al.  Image matching using peak signal-to-noise ratio-based occlusion detection , 2012 .

[36]  John Guttag,et al.  Real time reconstruction of quasiperiodic multi parameter physiological signals , 2012, EURASIP J. Adv. Signal Process..

[37]  Yann LeCun,et al.  The mnist database of handwritten digits , 2005 .