Energy scaling of a nonlinear compression setup using passive coherent combining.

Passive spatial and temporal coherent combining schemes are implemented to scale the output energy of a nonlinear temporal compression setup. By generating 32 replicas of the incident femtosecond pulses, the output of a high-energy fiber chirped-pulse amplifier can be compressed using self-phase modulation in a large-mode-area rod-type fiber at peak-power levels well beyond the self-focusing power. We demonstrate the generation of 71 fs 7.5 μJ pulses at 100 kHz repetition rate, corresponding to a peak power of 86 MW.