ASTEROID LIGHT CURVES FROM THE PALOMAR TRANSIENT FACTORY SURVEY: ROTATION PERIODS AND PHASE FUNCTIONS FROM SPARSE PHOTOMETRY

We fit 54,296 sparsely sampled asteroid light curves in the Palomar Transient Factory survey to a combined rotation plus phase-function model. Each light curve consists of 20 or more observations acquired in a single opposition. Using 805 asteroids in our sample that have reference periods in the literature, we find that the reliability of our fitted periods is a complicated function of the period, amplitude, apparent magnitude, and other light-curve attributes. Using the 805-asteroid ground-truth sample, we train an automated classifier to estimate (along with manual inspection) the validity of the remaining ~53,000 fitted periods. By this method we find that 9033 of our light curves (of ~8300 unique asteroids) have "reliable" periods. Subsequent consideration of asteroids with multiple light-curve fits indicates a 4% contamination in these "reliable" periods. For 3902 light curves with sufficient phase-angle coverage and either a reliable fit period or low amplitude, we examine the distribution of several phase-function parameters, none of which are bimodal though all correlate with the bond albedo and with visible-band colors. Comparing the theoretical maximal spin rate of a fluid body with our amplitude versus spin-rate distribution suggests that, if held together only by self-gravity, most asteroids are in general less dense than ~2 g cm^(−3), while C types have a lower limit of between 1 and 2 g cm^(−3). These results are in agreement with previous density estimates. For 5–20 km diameters, S types rotate faster and have lower amplitudes than C types. If both populations share the same angular momentum, this may indicate the two types' differing ability to deform under rotational stress. Lastly, we compare our absolute magnitudes (and apparent-magnitude residuals) to those of the Minor Planet Center's nominal (G = 0.15, rotation-neglecting) model; our phase-function plus Fourier-series fitting reduces asteroid photometric rms scatter by a factor of ~3.

[1]  CLASSIFICATION OF VARIABLE STARS , 1913 .

[2]  F. Massey The Kolmogorov-Smirnov Test for Goodness of Fit , 1951 .

[3]  T. Gehrels Photometric Studies of Asteroids. V. The Light-Curve and Phase Function of 20 Massalia. , 1956 .

[4]  Subrahmanyan Chandrasekhar,et al.  Ellipsoidal Figures of Equilibrium , 1969 .

[5]  Joseph A. Burns,et al.  Asteroid Nutation Angles , 1973 .

[6]  D. Morrison,et al.  Taxonomy of asteroids , 1978 .

[7]  J. Burns,et al.  Asteroid rotation. I - Tabulation and analysis of rates, pole positions and shapes. II - A theory for the collisional evolution of rotation rates , 1979 .

[8]  M. Gaffey,et al.  Reflectance spectra for 277 asteroids , 1979 .

[9]  R. Kron Photometry of a complete sample of faint galaxies. , 1980 .

[10]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[11]  UBV photometry of the asteroids 19 Fortuna and 29 Amphitrite , 1981 .

[12]  D. J. Tholen,et al.  The Eight-Color Asteroid Survey: Results for 589 Minor Planets , 1985 .

[13]  IRAS survey of asteroids , 1986 .

[14]  H. Salo Numerical simulations of collisions between rotating particles , 1987 .

[15]  Observations of Asteroid Phase Relations , 1988 .

[16]  J. Veverka,et al.  Physical characterization of asteroid surfaces from photometric analysis , 1989 .

[17]  Richard P. Binzel,et al.  Phase relations of high albedo asteroids: The unusual opposition brightening of 44 Nysa and 64 Angelina☆ , 1989 .

[18]  A. Harris,et al.  Asteroid lightcurve observations from 1979–1981 , 1989 .

[19]  Alan W. Harris,et al.  Application of photometric models to asteroids. , 1989 .

[20]  Markku Poutanen,et al.  Photoelectric observations of asteroids 3, 24, 60, 261, and 863 , 1989 .

[21]  A. Harris,et al.  Asteroid lightcurve observations from 1981 , 1992 .

[22]  B. Hapke Theory of reflectance and emittance spectroscopy , 1993 .

[23]  Stephen L. Chiu,et al.  Fuzzy Model Identification Based on Cluster Estimation , 1994, J. Intell. Fuzzy Syst..

[24]  Hiroyuki Watanabe,et al.  Application of a fuzzy discrimination analysis for diagnosis of valvular heart disease , 1994, IEEE Trans. Fuzzy Syst..

[25]  Richard P. Binzel,et al.  Small main-belt asteroid spectroscopic survey: Initial results , 1995 .

[26]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[27]  Peter B. Stetson,et al.  ON THE AUTOMATIC DETERMINATION OF LIGHT-CURVE PARAMETERS FOR CEPHEID VARIABLES , 1996 .

[28]  E. M. Standish,et al.  JPL's On-Line Solar System Data Service , 1996 .

[29]  Analysis of Asteroid Brightness-Phase Relations , 1997 .

[30]  The Midcourse Space Experiment , 1999 .

[31]  Stephan D. Price,et al.  The 2MASS Asteroid and Comet Survey , 1999 .

[32]  I. Belskaya,et al.  Opposition Effect of Asteroids , 2000 .

[33]  E. al.,et al.  The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.

[34]  Karri Muinonen,et al.  Optimization Methods for Asteroid Lightcurve Inversion. II. The Complete Inverse Problem , 2001 .

[35]  Stephan D. Price,et al.  The Supplemental IRAS Minor Planet Survey , 2002 .

[36]  M. Barucci,et al.  Visible-Wavelength Spectroscopy of Asteroids , 2002 .

[37]  Stephan D. Price,et al.  The Midcourse Space Experiment Infrared Minor Planet Survey , 2002 .

[38]  Richard P. Binzel,et al.  Phase II of the Small Main-Belt Asteroid Spectroscopic Survey: The Observations , 2002 .

[39]  J. E. Gunn,et al.  Color Confirmation of Asteroid Families , 2002 .

[40]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[41]  Mikko Kaasalainen,et al.  Physical models of large number of asteroids from calibrated photometry sparse in time , 2004 .

[42]  W. T. Vestrand,et al.  Identifying Red Variables in the Northern Sky Variability Survey , 2004 .

[43]  Richard G. West,et al.  The automated classification of astronomical light curves using Kohonen self-organizing maps , 2004 .

[44]  A. Szalay,et al.  The On-Orbit Performance of the Galaxy Evolution Explorer , 2004, astro-ph/0411310.

[45]  R. Binzel,et al.  Small Main-belt Asteroid Spectroscopic Survey, Phase II , 2004 .

[46]  R. Duffard,et al.  S3OS2: the visible spectroscopic survey of 820 asteroids , 2004 .

[47]  A. Szalay,et al.  The Galaxy Evolution Explorer: A Space Ultraviolet Survey Mission , 2004, astro-ph/0411302.

[48]  2MASS Asteroid and Comet Survey V1.0 , 2010 .

[49]  William F. Bottke,et al.  THE YARKOVSKY AND YORP EFFECTS: Implications for Asteroid Dynamics , 2006 .

[50]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[51]  A. Szalay,et al.  The Calibration and Data Products of GALEX , 2007 .

[52]  Petr Pravec,et al.  Direct Detection of the Asteroidal YORP Effect , 2007, Science.

[53]  S. G. Djorgovski,et al.  Automated probabilistic classification of transients and variables , 2008, 0802.3199.

[54]  D. Vokrouhlický,et al.  Spin rate distribution of small asteroids , 2008 .

[55]  Zeljko Ivezic,et al.  The Size Distributions of Asteroid Families in the SDSS Moving Object Catalog 4 , 2008, 0807.3762.

[56]  Sukanta Deb,et al.  Light curve analysis of Variable stars using Fourier decomposition and Principal component analysis , 2009, 0903.3500.

[57]  Petr Pravec,et al.  The asteroid lightcurve database , 2009 .

[58]  Ernest E. Croner,et al.  The Palomar Transient Factory: System Overview, Performance, and First Results , 2009, 0906.5350.

[59]  Larry Denneau,et al.  The Thousand Asteroid Light Curve Survey , 2009, 0906.3339.

[60]  K. Abazajian,et al.  THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2008, 0812.0649.

[61]  P. Tanga,et al.  Genetic inversion of sparse disk-integrated photometric data of asteroids: application to Hipparcos data , 2009 .

[62]  N. Brosch,et al.  Photometry and spin rate distribution of small-sized main belt asteroids , 2009 .

[63]  Oxford,et al.  Exploring the Optical Transient Sky with the Palomar Transient Factory , 2009, 0906.5355.

[64]  N. Zacharias UCAC3 PIXEL PROCESSING , 2010, 1003.4565.

[65]  S. Seager,et al.  Exoplanet Atmospheres , 2010 .

[66]  Karri Muinonen,et al.  A three-parameter magnitude phase function for asteroids , 2010 .

[67]  J. Zolkower,et al.  The Palomar Transient Factory Survey Camera: first year performance and results , 2010, Astronomical Telescopes + Instrumentation.

[68]  Martin G. Cohen,et al.  THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE): MISSION DESCRIPTION AND INITIAL ON-ORBIT PERFORMANCE , 2010, 1008.0031.

[69]  J. Bovy,et al.  Data analysis recipes: Fitting a model to data , 2010, 1008.4686.

[70]  Statistical analysis of C and S Main Belt Asteroids , 2010, 1904.03270.

[71]  Sara Seager,et al.  Exoplanet Atmospheres: Physical Processes , 2010 .

[72]  M. Sullivan,et al.  The Palomar Transient Factory Photometric Calibration , 2011, 1112.4851.

[73]  E. O. Ofek,et al.  A VERY LARGE ARRAY SEARCH FOR 5 GHz RADIO TRANSIENTS AND VARIABLES AT LOW GALACTIC LATITUDES , 2011, 1103.3010.

[74]  T. B. Spahr,et al.  MAIN BELT ASTEROIDS WITH WISE/NEOWISE. I. PRELIMINARY ALBEDOS AND DIAMETERS , 2011, 1109.4096.

[75]  Wei-Yin Loh,et al.  Classification and regression trees , 2011, WIREs Data Mining Knowl. Discov..

[76]  E. Ofek,et al.  PTF1 J071912.13+485834.0: AN OUTBURSTING AM CVn SYSTEM DISCOVERED BY A SYNOPTIC SURVEY , 2011, 1107.1209.

[77]  D. Bodewits,et al.  Collisional Excavation of Asteroid (596) Scheila , 2011 .

[78]  Munetaka Ueno,et al.  Asteroid Catalog Using AKARI: AKARI/IRC Mid-Infrared Asteroid Survey , 2011 .

[79]  Alessandro Morbidelli,et al.  A low mass for Mars from Jupiter’s early gas-driven migration , 2011, Nature.

[80]  David E. Trilling,et al.  Online multi-parameter phase-curve fitting and application to a large corpus of asteroid photometric data , 2011 .

[81]  Jonas Debosscher,et al.  Automated classification of periodic variable stars{Improved methodology for the automated classification of periodic variable stars} , 2011, 1101.5038.

[82]  Y. Krugly,et al.  Opposition effect of Trojan asteroids , 2012 .

[83]  D. A. Oszkiewicz,et al.  Asteroid taxonomic signatures from photometric phase curves , 2012, 1202.2270.

[84]  Amy K. Mainzer,et al.  WISE/NEOWISE OBSERVATIONS OF THE JOVIAN TROJAN POPULATION: TAXONOMY , 2012, 1209.1549.

[85]  Paul Mann,et al.  Phase reddening on near-Earth asteroids: Implications for mineralogical analysis, space weathering and taxonomic classification , 2012, 1205.0248.

[86]  J. Hanuš,et al.  The potential of sparse photometric data in asteroid shape modeling , 2012 .

[87]  Benoit Carry,et al.  Density of asteroids , 2012, 1203.4336.

[88]  E. O. Ofek,et al.  Asteroid rotation periods from the Palomar Transient Factory survey , 2012, 1201.1930.

[89]  E. O. Ofek,et al.  Automating Discovery and Classification of Transients and Variable Stars in the Synoptic Survey Era , 2011, 1106.5491.

[90]  E. Ofek,et al.  The Palomar Transient Factory photometric catalog 1.0 , 2012, 1206.1064.

[91]  Gareth V. Williams,et al.  Minor planet astrophotometry , 2012 .

[92]  A. Harris,et al.  On the maximum amplitude of harmonics of an asteroid lightcurve , 2012 .

[93]  Shrinivas R. Kulkarni,et al.  The intermediate Palomar Transient Factory (iPTF) begins , 2013 .

[94]  M. Park,et al.  Classification of Variable Stars Using Thick-Pen Transform Method , 2013 .

[95]  A. Vagnozzi,et al.  Asteroids’ physical models from combined dense and sparse photometry and scaling of the YORP effect by the observed obliquity distribution , 2013 .

[96]  David Polishook,et al.  Main-belt comets in the Palomar Transient Factory survey – I. The search for extendedness , 2013, 1305.7176.

[97]  V.,et al.  The Palomar Transient Factory Survey Camera : 1 st Year Performance and Results , 2013 .

[98]  Carl J. Grillmair,et al.  IPAC Image Processing and Data Archiving for the Palomar Transient Factory , 2014, 1404.1953.

[99]  Takafumi Ootsubo,et al.  A comparative study of infrared asteroid surveys : IRAS, AKARI, and WISE (New Insights into Near-Earth and Main-Belt Asteroids) , 2014, 1403.7854.

[100]  S. Kulkarni,et al.  313 NEW ASTEROID ROTATION PERIODS FROM PALOMAR TRANSIENT FACTORY OBSERVATIONS , 2014, 1405.1144.

[101]  Carl J. Grillmair,et al.  AUTOMATED CLASSIFICATION OF PERIODIC VARIABLE STARS DETECTED BY THE WIDE-FIELD INFRARED SURVEY EXPLORER , 2014, 1402.0125.

[102]  Sao,et al.  A MACHINE-LEARNING METHOD TO INFER FUNDAMENTAL STELLAR PARAMETERS FROM PHOTOMETRIC LIGHT CURVES , 2014, 1411.1073.

[103]  A. Cikota,et al.  A photometric search for active Main Belt asteroids , 2014, 1401.5527.

[104]  R. Sari,et al.  SPINS OF LARGE ASTEROIDS: A HINT OF A PRIMORDIAL DISTRIBUTION IN THEIR SPIN RATES , 2014, 1406.5730.

[105]  R. Laher,et al.  A NEW LARGE SUPER-FAST ROTATOR: (335433) 2005 UW163 , 2014, 1407.8264.

[106]  J. Masiero,et al.  MAIN-BELT ASTEROIDS WITH WISE/NEOWISE: NEAR-INFRARED ALBEDOS , 2014, 1406.6645.