Runge-Kutta discontinuous Galerkin methods for compressible two-medium flow simulations: One-dimensional case

The Runge-Kutta discontinuous Galerkin (RKDG) method for solving hyperbolic conservation laws is a high order finite element method, which utilizes the useful features from high resolution finite volume schemes, such as the exact or approximate Riemann solvers, TVD Runge-Kutta time discretizations, and limiters. In this paper, we investigate using the RKDG finite element method for compressible two-medium flow simulation with conservative treatment of the moving material interfaces. Numerical results for both gas-gas and gas-water flows in one-dimension are provided to demonstrate the characteristic behavior of this approach.

[1]  Charlie H. Cooke,et al.  On the Riemann problem for liquid or gas‐liquid media , 1994 .

[2]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems , 1989 .

[3]  Chi-Wang Shu,et al.  The Runge-Kutta Discontinuous Galerkin Method for Conservation Laws V , 1998 .

[4]  S. Osher,et al.  A Non-oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method) , 1999 .

[5]  Barry Koren,et al.  A PRESSURE-INVARIANT AND CONSERVATIVE METHOD FOR TWO-FLUID FLOWS , 2003 .

[6]  Khoon Seng Yeo,et al.  The simulation of compressible multi-medium flow. I. A new methodology with test applications to 1D gas–gas and gas–water cases , 2001 .

[7]  Paul Glaister,et al.  A ghost fluid, moving finite volume plus continuous remap method for compressible Euler flow , 2005 .

[8]  Barry Koren,et al.  Riemann-problem and level-set approaches for homentropic two-fluid flow computations , 2002 .

[9]  Smadar Karni,et al.  Multicomponent Flow Calculations by a Consistent Primitive Algorithm , 1994 .

[10]  B. Larrouturou How to preserve the mass fractions positivity when computing compressible multi-component flows , 1991 .

[11]  Chi-Wang Shu,et al.  Runge-Kutta Discontinuous Galerkin Method Using WENO Limiters , 2005, SIAM J. Sci. Comput..

[12]  C. Angelopoulos High resolution schemes for hyperbolic conservation laws , 1992 .

[13]  Chi-Wang Shu TVB uniformly high-order schemes for conservation laws , 1987 .

[14]  W. H. Reed,et al.  Triangular mesh methods for the neutron transport equation , 1973 .

[15]  Boo Cheong Khoo,et al.  The ghost fluid method for compressible gas-water simulation , 2005 .

[16]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous galerkin finite element method for conservation laws. II: General framework , 1989 .

[17]  Jianxian Qiu,et al.  Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method: one-dimensional case , 2004 .

[18]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[19]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[20]  R. Fedkiw,et al.  Coupling an Eulerian fluid calculation to a Lagrangian solid calculation with the ghost fluid method , 2002 .

[21]  Boo Cheong Khoo,et al.  The simulation of compressible multi-medium flow: II. Applications to 2D underwater shock refraction , 2001 .

[22]  S. Osher,et al.  Level set methods: an overview and some recent results , 2001 .

[23]  S. Osher,et al.  Algorithms Based on Hamilton-Jacobi Formulations , 1988 .

[24]  Bernardo Cockburn,et al.  The Runge-Kutta local projection P1-discontinuous-Galerkin finite element method for scalar conservation laws , 1988 .

[25]  Ning Zhao,et al.  Conservative front tracking and level set algorithms , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Rémi Abgrall,et al.  Computations of compressible multifluids , 2001 .

[27]  R. Abgrall How to Prevent Pressure Oscillations in Multicomponent Flow Calculations , 1996 .

[28]  Boo Cheong Khoo,et al.  Ghost fluid method for strong shock impacting on material interface , 2003 .

[29]  Chi-Wang Shu,et al.  The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case , 1990 .

[30]  R. Fedkiw,et al.  A numerical method for two-phase flow consisting of separate compressible and incompressible regions , 2000 .

[31]  Richard Saurel,et al.  A Riemann Problem Based Method for the Resolution of Compressible Multimaterial Flows , 1997 .

[32]  Chi-Wang Shu,et al.  The Runge-Kutta local projection $P^1$-discontinuous-Galerkin finite element method for scalar conservation laws , 1988, ESAIM: Mathematical Modelling and Numerical Analysis.