A Framework For Adaptive Data Integration In Digital Production

Modern production processes' complexity increases steadily. Therefore, virtual planning has been prevailed as a method used to evaluate risks and costs before the concrete realization of production processes. In doing so, virtual planning uses a number of numerical simulation tools that differ in the simulated production techniques as well as in the considered problem domains. Users may choose between tailor-made, thus costly, simulation tools delivering accurate results and off-the-shelf, thus less costly, simulation tools causing post-processing efforts. Thereby, simulating a whole production process is often hardly realizable due to insufficient prediction accuracy or the missing support of a production technique. The supposed solution of interconnecting different simulation tools to solve such problems is hardly applicable as incompatible file formats, mark-up languages and models describing simulated objects cause an inconsistency of data and interfaces. This paper presents the architecture of a framework for adaptive data integration that enables the interconnection of such numerical simulation tools of a specific domain.

[1]  Steffen Staab,et al.  Web Services: Been There, Done That? , 2003, IEEE Intell. Syst..

[2]  Marco Aiello,et al.  Optimal QoS-Aware Web Service Composition , 2009, 2009 IEEE Conference on Commerce and Enterprise Computing.

[3]  Michi Henning,et al.  The Rise and Fall of CORBA , 2006, ACM Queue.

[4]  Günther Schuh,et al.  Integrierte Produkt- und Prozessgestaltung , 2005 .

[5]  Markus Apel,et al.  Thermo‐elastic Homogenization of 3‐D Steel Microstructure Simulated by the Phase‐field Method , 2010 .

[6]  Christian H. Bischof,et al.  Towards a Flexible and Distributed Simulation Platform , 2008, ICCSA.

[7]  Georg J. Schmitz,et al.  Toward a virtual platform for materials processing , 2009 .

[8]  Steven Tuecke,et al.  The Open Grid Services Architecture , 2004, The Grid 2, 2nd Edition.

[9]  Jérémie Allard,et al.  Distributed Physical Based Simulations for Large VR Applications , 2006, IEEE Virtual Reality Conference (VR 2006).

[10]  Dong Liu,et al.  Adaptive Service Binding with Lightweight Semantic Web Services , 2011 .

[11]  Thomas Erl,et al.  SOA Principles of Service Design (The Prentice Hall Service-Oriented Computing Series from Thomas Erl) , 2007 .

[12]  Dirk Krafzig Serviceorientierte Architekturen (SOA) , 2010 .

[13]  David Taniar,et al.  Computational Science and Its Applications - ICCSA 2009, International Conference, Seoul, Korea, June 29-July 2, 2009, Proceedings, Part I , 2009, ICCSA.

[14]  Günther Schuh,et al.  Integrierte Produkt- und Prozessgestaltung : [Ergebnisse des Sonderforschungsbereiches (SFB) 361 der Deutschen Forschungsgemeinschaft (DFG) an der RWTH Aachen] , 2005 .

[15]  Franz Schweiggert,et al.  Informationsverarbeitung in Versicherungsunternehmen , 2010 .

[16]  W.M.P. van der Aalst,et al.  Don't go with the flow: web services composition standards exposed , 2003 .

[17]  Gregor Hohpe,et al.  Enterprise Integration Patterns: Designing, Building, and Deploying Messaging Solutions , 2003 .

[18]  Ted Belytschko,et al.  Elastic crack growth in finite elements with minimal remeshing , 1999 .

[19]  O. Kalden SimVis A Concurrent Engineering Tool for Rapid Simulation Development , 2007, 2007 3rd International Conference on Recent Advances in Space Technologies.

[20]  M. Meyer,et al.  Enterprise Application Integration — Grundlagen , 2002 .

[21]  Ubbo Visser,et al.  Intelligent Information Integration for the Semantic Web , 2004, Lecture Notes in Computer Science.

[22]  Joann J. Ordille,et al.  Data integration: the teenage years , 2006, VLDB.

[23]  James A. Hendler,et al.  Handbook of Semantic Web Technologies , 2011, Handbook of Semantic Web Technologies.

[24]  Xin Yu,et al.  QoS-aware semantic web service composition for SOAs , 2010, 2010 IEEE International Conference on Service-Oriented Computing and Applications (SOCA).

[25]  Boris Motik,et al.  A Comparison of Reasoning Techniques for Querying Large Description Logic ABoxes , 2006, LPAR.

[26]  Fèlix Saltor,et al.  A structure based schema integration methodology , 1995, Proceedings of the Eleventh International Conference on Data Engineering.

[27]  Amit P. Sheth,et al.  METEOR-S WSDI: A Scalable P2P Infrastructure of Registries for Semantic Publication and Discovery of Web Services , 2005, Inf. Technol. Manag..

[28]  Ian Gorton,et al.  Next generation application integration: challenges and new approaches , 2003, Proceedings 27th Annual International Computer Software and Applications Conference. COMPAC 2003.

[29]  Paul T. Groth,et al.  The provenance of electronic data , 2008, CACM.

[30]  Armin Haller,et al.  WSMX - a semantic service-oriented architecture , 2005, IEEE International Conference on Web Services (ICWS'05).

[31]  Michel Rappaz,et al.  Modeling of fundamental phenomena in welds , 1995 .

[32]  Michel Gagnon,et al.  Ontology-based integration of data sources , 2007, 2007 10th International Conference on Information Fusion.

[33]  Steffen Staab,et al.  Neurons, Viscose Fluids, Freshwater Polyp Hydra-and Self-Organizing Information Systems , 2003, IEEE Intell. Syst..

[34]  Tomas Vitvar,et al.  SAWSDL: Semantic Annotations for WSDL and XML Schema , 2007, IEEE Internet Computing.

[35]  Wolfgang Marquardt,et al.  CHEOPS: A tool-integration platform for chemical process modelling and simulation , 2004, International Journal on Software Tools for Technology Transfer.

[36]  Frank Wolter,et al.  Monodic fragments of first-order temporal logics: 2000-2001 A.D , 2001, LPAR.

[37]  Thomas Erl,et al.  SOA Principles of Service Design , 2007 .

[38]  Reiner Anderl,et al.  STEP STandard for the Exchange of Product Model Data , 2000 .