Nanoscale ductile fracture and associated atomistic mechanisms in a body-centered cubic refractory metal

[1]  E. Ma,et al.  Relative mobility of screw versus edge dislocations controls the ductile-to-brittle transition in metals , 2021, Proceedings of the National Academy of Sciences.

[2]  Binglun Yin,et al.  A ductility criterion for bcc high entropy alloys , 2021, Journal of the Mechanics and Physics of Solids.

[3]  S. Ringer,et al.  Deformation-induced crystalline-to-amorphous phase transformation in a CrMnFeCoNi high-entropy alloy , 2021, Science Advances.

[4]  Jiangwei Wang,et al.  Anti-twinning in nanoscale tungsten , 2020, Science Advances.

[5]  Lihua Wang,et al.  Atomistic mechanism of nucleation and growth of a face-centered orthogonal phase in small-sized single-crystalline Mo , 2020 .

[6]  T. Zhu,et al.  Integrating in situ TEM experiments and atomistic simulations for defect mechanics , 2019, Current Opinion in Solid State and Materials Science.

[7]  L. Qi,et al.  Ab initio calculations of ideal strength and lattice instability in W-Ta and W-Re alloys , 2018 .

[8]  B. Choudhary,et al.  Atomistic simulations on ductile-brittle transition in ⟨111⟩ BCC Fe nanowires , 2017, 1710.02345.

[9]  Ting Zhu,et al.  In situ atomic-scale observation of twinning-dominated deformation in nanoscale body-centred cubic tungsten. , 2015, Nature materials.

[10]  Peter Gumbsch,et al.  Atomistic aspects of fracture , 2015, International Journal of Fracture.

[11]  Shenghao Xu,et al.  Supplementary Information , 2014, States at War, Volume 3.

[12]  W. Curtin,et al.  Atomic mechanism and prediction of hydrogen embrittlement in iron. , 2013, Nature materials.

[13]  J. Marian,et al.  Three-dimensional crack initiation mechanisms in bcc-Fe under loading modes I, II and III , 2013 .

[14]  R. Hennig,et al.  Ab initio prediction of environmental embrittlement at a crack tip in aluminum , 2012 .

[15]  Richard G. Hennig,et al.  Ab initio based empirical potential used to study the mechanical properties of molybdenum , 2012 .

[16]  E. Ma,et al.  A new regime for mechanical annealing and strong sample-size strengthening in body centred cubic molybdenum. , 2011, Nature communications.

[17]  W. Curtin,et al.  A nanoscale mechanism of hydrogen embrittlement in metals , 2011 .

[18]  Julia R. Greer,et al.  Tensile and compressive behavior of tungsten, molybdenum, tantalum and niobium at the nanoscale , 2010 .

[19]  Julia R. Greer,et al.  Tensile and compressive behavior of gold and molybdenum single crystals at the nano-scale , 2009 .

[20]  A. Minor,et al.  The effect of twin plane spacing on the deformation of copper containing a high density of growth twins , 2008 .

[21]  Stephen Roberts,et al.  The brittle–ductile transition in single-crystal iron , 2008 .

[22]  D. Warner,et al.  Rate dependence of crack-tip processes predicts twinning trends in f.c.c. metals. , 2007, Nature materials.

[23]  Vasily V. Bulatov,et al.  Dislocation multi-junctions and strain hardening , 2006, Nature.

[24]  Ting Zhu,et al.  Atomistic study of dislocation loop emission from a crack tip. , 2004, Physical review letters.

[25]  Ting Zhu,et al.  Atomistic mechanisms governing elastic limit and incipient plasticity in crystals , 2002, Nature.

[26]  S. Phillpot,et al.  Atomic-Scale Mechanism of Crack-Tip Plasticity: Dislocation Nucleation and Crack-Tip Shielding , 1997 .

[27]  John R. Rice,et al.  The activation energy for dislocation nucleation at a crack , 1994 .

[28]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[29]  H. Saka,et al.  HVEM observation of dislocation-free zones at crack tips in iron single crystals , 1988 .

[30]  G. Ackland,et al.  An improved N-body semi-empirical model for body-centred cubic transition metals , 1987 .

[31]  S. Ohr An electron microscope study of crack tip deformation and its impact on the dislocation theory of fracture , 1985 .

[32]  H. Wilsdorf The role of glide and twinning in the final separation of ruptured gold crystals , 1982 .

[33]  S. Kobayashi,et al.  In situ fracture experiments in b.c.c. metals , 1980 .

[34]  Anthony Kelly,et al.  Ductile and brittle crystals , 1967 .

[35]  A. Cottrell Mechanics of fracture in large structures , 1965, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[36]  A. Cottrell The Bakerian Lecture, 1963. Fracture , 1963, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[37]  D. W. Pashley A study of the deformation and fracture of single-crystal gold films of high strength inside an electron microscope , 1960, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[38]  P. Haušild,et al.  Ductile–brittle behavior at the (110)[001] crack in bcc iron crystals loaded in mode I , 2010 .

[39]  A. Argon,et al.  Strengthening Mechanisms in Crystal Plasticity , 2007 .

[40]  A. S. Argon,et al.  Mechanics and Physics of Brittle to Ductile Transitions in Fracture , 2001 .

[41]  Sir Alan Cottrell Fifty years on the shelf , 1995 .

[42]  James R. Rice,et al.  Dislocation Nucleation from a Crack Tip" an Analysis Based on the Peierls Concept , 1991 .

[43]  A. Argon Brittle to ductile transition in cleavage fracture , 1987 .

[44]  James R. Rice,et al.  Ductile versus brittle behaviour of crystals , 1974 .