Emergent behavior of growing knowledge about molecular interactions

A billion nonredundant molecular interactions lie buried in the biomedical literature. A text-mining approach could help scientists better exploit this knowledge.

[1]  Chaomei Chen,et al.  Searching for intellectual turning points: Progressive knowledge domain visualization , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[2]  D J PRICE,et al.  NETWORKS OF SCIENTIFIC PAPERS. , 1965, Science.

[3]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[4]  Roger Guimerà,et al.  Team Assembly Mechanisms Determine Collaboration Network Structure and Team Performance , 2005, Science.

[5]  A. Barabasi,et al.  Evolution of the social network of scientific collaborations , 2001, cond-mat/0104162.

[6]  Michael Krauthammer,et al.  Of truth and pathways: chasing bits of information through myriads of articles , 2002, ISMB.

[7]  N. Draper,et al.  Applied Regression Analysis: Draper/Applied Regression Analysis , 1998 .

[8]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[9]  Sylvia Richardson,et al.  Markov Chain Monte Carlo in Practice , 1997 .

[10]  Michael Krauthammer,et al.  GeneWays: a system for extracting, analyzing, visualizing, and integrating molecular pathway data , 2004, J. Biomed. Informatics.

[11]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[12]  Lene Theil Skovgaard,et al.  Applied regression analysis. 3rd edn. N. R. Draper and H. Smith, Wiley, New York, 1998. No. of pages: xvii+706. Price: £45. ISBN 0‐471‐17082‐8 , 2000 .

[13]  Michael Krauthammer,et al.  GENIES: a natural-language processing system for the extraction of molecular pathways from journal articles , 2001, ISMB.

[14]  N. Draper,et al.  Applied Regression Analysis , 1966 .