A Herschel [C ii] Galactic plane survey - I. The global distribution of ISM gas components

Context. The [C ii] 158 μm line is an important tool for understanding the life cycle of interstellar matter. Ionized carbon is present in a variety of phases of the interstellar medium (ISM), including the diffuse ionized medium, warm and cold atomic clouds, clouds in transition from atomic to molecular, and dense and warm photon dominated regions. Aims. Velocity-resolved observations of [C ii] are the most powerful technique available to disentangle the emission produced by these components. These observations can also be used to trace CO-dark H2 gas and determine the total mass of the ISM. Methods. The Galactic Observations of Terahertz C+ (GOTC+) project surveys the [C ii] 158 μm line over the entire Galactic disk with velocity-resolved observations using the Herschel/HIFI instrument. We present the first longitude-velocity maps of the [C ii] emission for Galactic latitudes b = 0 ◦ , ±0.5 ◦ ,a nd±1.0 ◦ . We combine these maps with those of H i, 12 CO, and 13 CO to separate the different phases of the ISM and study their properties and distribution in the Galactic plane. Results. [C ii] emission is mostly associated with spiral arms, mainly emerging from Galactocentric distances between 4 and 10kpc. It traces the envelopes of evolved clouds as well as clouds that are in the transition between atomic and molecular. We estimate that most of the observed [C ii] emission is produced by dense photon dominated regions (∼47%), with smaller contributions from COdark H2 gas (∼28%), cold atomic gas (∼21%), and ionized gas (∼4%). Atomic gas inside the Solar radius is mostly in the form of cold neutral medium (CNM), while the warm neutral medium gas dominates the outer galaxy. The average fraction of CNM relative to total atomic gas is ∼43%. We find that the warm and diffuse CO-dark H2 is distributed over a larger range of Galactocentric distances (4−11kpc) than the cold and dense H2 gas traced by 12 CO and 13 CO (4−8kpc). The fraction of CO-dark H2 to total H2 increases with Galactocentric distance, ranging from ∼20% at 4kpc to ∼80% at 10kpc. On average, CO-dark H2 accounts for ∼30% of the molecular mass of the Milky Way. When the CO-dark H2 component is included, the radial distribution of the CO-to-H2 conversion factor is steeper than that when only molecular gas traced by CO is considered. Most of the observed [C ii] emission emerging from dense photon dominated regions is associated with modest far-ultraviolet fields in the range χ0 � 1−30.

[1]  P. Goldsmith,et al.  COLLISIONAL EXCITATION OF THE [C ii] FINE STRUCTURE TRANSITION IN INTERSTELLAR CLOUDS , 2012, 1209.4536.

[2]  P. Goldsmith,et al.  GOT C+ Survey of [CII] 158 μm Emission: Atomic to Molecular Cloud Transitions in the Inner Galaxy† , 2012, Proceedings of the International Astronomical Union.

[3]  T. Onishi,et al.  Dark gas in the solar neighborhood from extinction data , 2012, 1205.3384.

[4]  J. Stutzki,et al.  [12Cii] and [13C ii] 158 μ m emission from NGC 2024: Large column densities of ionized carbon , 2012, 1203.2012.

[5]  Michael Olberg,et al.  In-orbit performance of Herschel-HIFI , 2012 .

[6]  J. Peek,et al.  THE GALFA-Hi SURVEY: DATA RELEASE 1 , 2011, 1101.1879.

[7]  J. Rathborne,et al.  PHYSICAL PROPERTIES AND GALACTIC DISTRIBUTION OF MOLECULAR CLOUDS IDENTIFIED IN THE GALACTIC RING SURVEY , 2010, 1010.2798.

[8]  T. Steiman-Cameron,et al.  COBE AND THE GALACTIC INTERSTELLAR MEDIUM: GEOMETRY OF THE SPIRAL ARMS FROM FIR COOLING LINES , 2010 .

[9]  Jet Propulsion Laboratory,et al.  A Sample of [CII] Clouds Tracing Dense Clouds in Weak FUV Fields observed by Herschel , 2010, 1007.5068.

[10]  Di Li,et al.  THE RELATION BETWEEN GAS AND DUST IN THE TAURUS MOLECULAR CLOUD , 2010, 1007.5060.

[11]  D. Li,et al.  Herschel / HIFI : first science highlights Special feature L etter to the E ditor C + detection of warm dark gas in diffuse clouds , 2010 .

[12]  P. Goldsmith,et al.  THE UPTAKE OF INTERSTELLAR GASEOUS CO INTO ICY GRAIN MANTLES IN A QUIESCENT DARK CLOUD , 2010, 1007.2888.

[13]  S. Ott,et al.  Herschel Space Observatory - An ESA facility for far-infrared and submillimetre astronomy , 2010, 1005.5331.

[14]  Christopher F. McKee,et al.  THE DARK MOLECULAR GAS , 2010, 1004.5401.

[15]  W. Reach,et al.  Physical properties of giant molecular clouds in the Large Magellanic Cloud , 2010, 1004.2094.

[16]  P. Kalberla,et al.  The H i Distribution of the Milky Way , 2009 .

[17]  T. Wong,et al.  THE INFLUENCE OF FAR-ULTRAVIOLET RADIATION ON THE PROPERTIES OF MOLECULAR CLOUDS IN THE 30 DOR REGION OF THE LARGE MAGELLANIC CLOUD , 2009, 0907.5186.

[18]  E. Dishoeck,et al.  The photodissociation and chemistry of CO isotopologues: applications to interstellar clouds and circumstellar disks , 2009, 0906.3699.

[19]  E. Vázquez-Semadeni Are There Phases in the ISM , 2009, 0902.0820.

[20]  J. Stil,et al.  THE OUTER DISK OF THE MILKY WAY SEEN IN λ21 cm ABSORPTION , 2009, 0901.0968.

[21]  R. J. Reynolds,et al.  The warm ionized medium in spiral galaxies , 2009, 0901.0941.

[22]  Bonn,et al.  A clumpy-cloud photon-dominated regions model of the global far-infrared line emission of the Milky Way , 2008, 0807.1988.

[23]  J. Vallée NEW VELOCIMETRY AND REVISED CARTOGRAPHY OF THE SPIRAL ARMS IN THE MILKY WAY—A CONSISTENT SYMBIOSIS , 2008 .

[24]  Gopal Narayanan,et al.  Large-Scale Structure of the Molecular Gas in Taurus Revealed by High Linear Dynamic Range Spectral Line Mapping , 2008, 0802.2206.

[25]  J. Black,et al.  A computer program for fast non-LTE analysis of interstellar line spectra With diagnostic plots to interpret observed line intensity ratios , 2007, 0704.0155.

[26]  J. Stil,et al.  Accepted for Publication in the Astronomical Journal the Vla Galactic Plane Survey Accepted for Publication in the Astronomical Journal , 2022 .

[27]  D. Padgett,et al.  MIPSGAL: A Survey of the Inner Galactic Plane at 24 and 70 μm , 2005 .

[28]  A. Tielens The Physics and Chemistry of the Interstellar Medium , 2005 .

[29]  Isabelle A. Grenier,et al.  Unveiling Extensive Clouds of Dark Gas in the Solar Neighborhood , 2005, Science.

[30]  T. Wong,et al.  Beam Size, Shape and Efficiencies for the ATNF Mopra Radio Telescope at 86–115 GHz , 2005, Publications of the Astronomical Society of Australia.

[31]  C. Kramer,et al.  The Herschel-Heterodyne Instrument for the Far-Infrared (HIFI) , 2005, Infrared and Millimeter Waves, Conference Digest of the 2004 Joint 29th International Conference on 2004 and 12th International Conference on Terahertz Electronics, 2004..

[32]  A. Tielens,et al.  Neutral Atomic Phases of the Interstellar Medium in the Galaxy , 2003 .

[33]  C. Heiles,et al.  THE MILLENNIUM ARECIBO 21-CM ABSORPTION LINE SURVEY . II . PROPERTIES OF THE WARM AND COLD NEUTRAL MEDIA , 2002 .

[34]  N. J. Wilson,et al.  Effective collision strengths for ground-state and 2s22p–2s2p2 fine-structure transitions in C ii , 2002 .

[35]  J. Dickey,et al.  The Radial Distribution of Cold Atomic Hydrogen in the Galaxy , 2002 .

[36]  L. Ziurys,et al.  Galactic 12C/13C Ratios from Millimeter-Wave Observations of Interstellar CN , 2002 .

[37]  Paule Sonnentrucker,et al.  A Far Ultraviolet Spectroscopic Explorer Survey of Interstellar Molecular Hydrogen in Translucent Clouds , 2002 .

[38]  D. Hollenbach,et al.  The Neutral Atomic Phases of the ISM in the Galaxy , 2002, astro-ph/0207098.

[39]  D. Hartmann,et al.  The Milky Way in Molecular Clouds: A New Complete CO Survey , 2000, astro-ph/0009217.

[40]  G. P. Forêts,et al.  Molecular Hydrogen in Space: Observations and Models , 2000 .

[41]  NASA Ames Research Center,et al.  Far-Infrared and Submillimeter Emission from Galactic and Extragalactic Photodissociation Regions , 1999, astro-ph/9907255.

[42]  Alexander G. G. M. Tielens,et al.  Photodissociation Regions in the Interstellar Medium of Galaxies , 1999 .

[43]  F. Schloerb,et al.  The Five College Radio Astronomy Observatory CO Survey of the Outer Galaxy , 1998 .

[44]  Peter G. Martin,et al.  The Canadian Galactic Plane Survey , 1998, Publications of the Astronomical Society of Australia.

[45]  T. Nakagawa,et al.  Far-Infrared [C II] Line Survey Observations of the Galactic Plane , 1997, astro-ph/9712333.

[46]  Gordon J. Stacey,et al.  [C II] 158 Micron Observations of IC 10: Evidence for Hidden Molecular Hydrogen in Irregular Galaxies , 1997 .

[47]  B. Savage,et al.  The Abundance of Interstellar Carbon , 1996 .

[48]  S. Sakamoto Effects of molecular cloud properties on the CO-to-H2 conversion factor. , 1996 .

[49]  A. Tielens,et al.  The neutral atomic phases of the interstellar medium , 1995 .

[50]  C. D. Wilson,et al.  The Metallicity Dependence of the CO-to-H2 Conversion Factor from Observations of Local Group Galaxies , 1995, astro-ph/9506103.

[51]  C. Heiles On the Origin of the Diffuse C + 158 Micron Line Emission , 1994 .

[52]  Jr.,et al.  MORPHOLOGY OF THE INTERSTELLAR COOLING LINES DETECTED BY COBE , 1993, astro-ph/9311032.

[53]  C. Bennett,et al.  Galactic fine-structure lines - Morphologies of the warm ionized interstellar medium , 1993 .

[54]  Ionized carbon in the Large Magellanic Cloud , 1991 .

[55]  A. Poglitsch,et al.  The 158 micron forbidden C II line - A measure of global star formation activity in galaxies , 1991 .

[56]  G. Garay,et al.  A (C-12)O survey of the Small Magellanic Cloud , 1991 .

[57]  J. Dickey,et al.  H I in the Galaxy , 1990 .

[58]  Alexander G. G. M. Tielens,et al.  The Correlation of C II 158 Micron and CO (J = 1--0) Line Emission , 1989 .

[59]  R. J. Reynolds The column density and scale height of free electrons in the galactic disk , 1989 .

[60]  J. Black,et al.  The photodissociation and chemistry of interstellar CO , 1988 .

[61]  J. Zmuidzinas,et al.  Heterodyne spectroscopy of the 158 micron C II line in M42. , 1988, The Astrophysical journal.

[62]  Philip R. Maloney,et al.  I(CO)/N(H2) conversions and molecular gas abundances in spiral and irregular galaxies , 1988 .

[63]  N. Scoville,et al.  H 2 in the Galaxy , 1987 .

[64]  R. Wilson,et al.  The relationship between carbon monoxide abundance and visual extinction in interstellar clouds. , 1982 .

[65]  B. Savage,et al.  A survey of interstellar H I from L-alpha absorption measurements. II , 1978 .

[66]  R. Dickman,et al.  The ratio of carbon monoxide to molecular hydrogen in interstellar dark clouds , 1978 .

[67]  B. Draine Photoelectric heating of interstellar gas , 1978 .

[68]  J. Launay,et al.  Molecular collision processes. II - Excitation of the fine-structure transition of C/+/ in collisions with H2 , 1977 .

[69]  E. Salpeter,et al.  Temperature Distribution of Neutral Hydrogen at High Galactic Latitudes , 1977 .

[70]  Eric Herbst,et al.  The formation and depletion of molecules in dense interstellar clouds , 1973 .

[71]  P. Solomon,et al.  The formation of diatomic molecules in interstellar clouds. , 1972 .

[72]  H. Habing,et al.  Cosmic-Ray Heating of the Interstellar Gas , 1969 .