As Time Goes By: Reflections on Treewidth for Temporal Graphs

Treewidth is arguably the most important structural graph parameter leading to algorithmically beneficial graph decompositions. Triggered by a strongly growing interest in temporal networks (graphs where edge sets change over time), we discuss fresh algorithmic views on temporal tree decompositions and temporal treewidth. We review and explain some of the recent work together with some encountered pitfalls, and we point out challenges for future research.

[1]  Elisabeth Gassner,et al.  The Steiner Forest Problem revisited , 2010, J. Discrete Algorithms.

[2]  Dimitrios M. Thilikos,et al.  Invitation to fixed-parameter algorithms , 2007, Comput. Sci. Rev..

[3]  Dimitris Fotakis,et al.  On the Size and the Approximability of Minimum Temporally Connected Subgraphs , 2016, ICALP.

[4]  Rolf Niedermeier,et al.  Efficient Computation of Optimal Temporal Walks under Waiting-Time Constraints , 2019, COMPLEX NETWORKS.

[5]  Torben Hagerup,et al.  Parallel Algorithms with Optimal Speedup for Bounded Treewidth , 1995, SIAM J. Comput..

[6]  Rolf Niedermeier,et al.  On Bounded-Degree Vertex Deletion parameterized by treewidth , 2012, Discret. Appl. Math..

[7]  Rolf Niedermeier,et al.  Multistage Vertex Cover , 2019, Theory of Computing Systems.

[8]  Ton Kloks,et al.  Efficient and Constructive Algorithms for the Pathwidth and Treewidth of Graphs , 1993, J. Algorithms.

[9]  Paul G. Spirakis,et al.  Temporal Vertex Cover with a Sliding Time Window , 2018, ICALP.

[10]  Jessica Enright,et al.  Changing times to optimise reachability in temporal graphs , 2018, ArXiv.

[11]  René Saitenmacher,et al.  Listing All Maximal k-Plexes in Temporal Graphs , 2018, 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM).

[12]  Michael R. Fellows,et al.  Fundamentals of Parameterized Complexity , 2013 .

[13]  Dieter Kratsch,et al.  Treewidth and Pathwidth of Permutation Graphs , 1993, ICALP.

[14]  Michal Pilipczuk,et al.  A ck n 5-Approximation Algorithm for Treewidth , 2016, SIAM J. Comput..

[15]  Rolf Niedermeier,et al.  The Complexity of Finding Small Separators in Temporal Graphs , 2017, MFCS.

[16]  Pavel Dvorák,et al.  Parameterized Complexity of Length-bounded Cuts and Multicuts , 2015, Algorithmica.

[17]  Thomas Erlebach,et al.  A Game of Cops and Robbers on Graphs with Periodic Edge-Connectivity , 2019, SOFSEM.

[18]  Christian Komusiewicz,et al.  The First Parameterized Algorithms and Computational Experiments Challenge , 2017, IPEC.

[19]  Paul G. Spirakis,et al.  The temporal explorer who returns to the base , 2018, CIAC.

[20]  Rolf Niedermeier,et al.  Computing Maximum Matchings in Temporal Graphs , 2019, STACS.

[21]  Robin Thomas,et al.  Graph Searching and a Min-Max Theorem for Tree-Width , 1993, J. Comb. Theory, Ser. B.

[22]  Dániel Marx,et al.  NP‐completeness of list coloring and precoloring extension on the edges of planar graphs , 2005, J. Graph Theory.

[23]  Michal Pilipczuk,et al.  Parameterized Algorithms , 2015, Springer International Publishing.

[24]  Matthieu Latapy,et al.  Computing maximal cliques in link streams , 2015, Theor. Comput. Sci..

[25]  Nicola Santoro,et al.  Time-varying graphs and dynamic networks , 2010, Int. J. Parallel Emergent Distributed Syst..

[26]  Igor Potapov,et al.  Optimizing Reachability Sets in Temporal Graphs by Delaying , 2020, AAAI.

[27]  Jens Vygen,et al.  The edge-disjoint paths problem is NP-complete for series-parallel graphs , 2001, Discret. Appl. Math..

[28]  Rolf H. Möhring,et al.  The Pathwidth and Treewidth of Cographs , 1993, SIAM J. Discret. Math..

[29]  Rolf Niedermeier,et al.  Temporal Graph Classes: A View Through Temporal Separators , 2018, WG.

[30]  Arnaud Casteigts,et al.  The Computational Complexity of Finding Temporal Paths under Waiting Time Constraints , 2019, ArXiv.

[31]  Bruno Courcelle,et al.  Graph Structure and Monadic Second-Order Logic - A Language-Theoretic Approach , 2012, Encyclopedia of mathematics and its applications.

[32]  Arnaud Casteigts,et al.  Temporal Cliques Admit Sparse Spanners , 2018, ICALP.

[33]  Rolf Niedermeier,et al.  The Parameterized Complexity of the Minimum Shared Edges Problem , 2016, FSTTCS.

[34]  Viktor Zamaraev,et al.  Sliding Window Temporal Graph Coloring , 2018, AAAI.

[35]  Hans L. Bodlaender,et al.  A Tourist Guide through Treewidth , 1993, Acta Cybern..

[36]  Rolf Niedermeier,et al.  Comparing temporal graphs using dynamic time warping , 2018, Social Network Analysis and Mining.

[37]  Thomas Erlebach,et al.  Faster Exploration of Degree-Bounded Temporal Graphs , 2018, MFCS.

[38]  Jayadev Misra,et al.  A Constructive Proof of Vizing's Theorem , 1992, Inf. Process. Lett..

[39]  Kelin Luo,et al.  Two Moves per Time Step Make a Difference , 2019, ICALP.

[40]  Derek G. Corneil,et al.  Complexity of finding embeddings in a k -tree , 1987 .

[41]  Arie M. C. A. Koster,et al.  Treewidth computations II. Lower bounds , 2011, Inf. Comput..

[42]  Jari Saramäki,et al.  Temporal Networks , 2011, Encyclopedia of Social Network Analysis and Mining.

[43]  Rolf Niedermeier,et al.  Enumerating Isolated Cliques in Temporal Networks , 2019, COMPLEX NETWORKS.

[44]  Bernard Mans,et al.  On the exploration of time-varying networks , 2013, Theor. Comput. Sci..

[45]  Saket Saurabh,et al.  Capacitated Domination and Covering: A Parameterized Perspective , 2008, IWPEC.

[46]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[47]  Dániel Marx,et al.  Complexity results for minimum sum edge coloring , 2009, Discret. Appl. Math..

[48]  Hans L. Bodlaender,et al.  On exploring always-connected temporal graphs of small pathwidth , 2019, Inf. Process. Lett..

[49]  Ioan Todinca,et al.  Treewidth and Minimum Fill-in: Grouping the Minimal Separators , 2001, SIAM J. Comput..

[50]  Jörg Flum,et al.  Parameterized Complexity Theory , 2006, Texts in Theoretical Computer Science. An EATCS Series.

[51]  Dimitrios M. Thilikos,et al.  Treewidth for Graphs with Small Chordality , 1997, Discret. Appl. Math..

[52]  Hans L. Bodlaender,et al.  Dynamic Algorithms for Graphs with Treewidth 2 , 1993, WG.

[53]  David P. Dailey Uniqueness of colorability and colorability of planar 4-regular graphs are NP-complete , 1980, Discret. Math..

[54]  Hans L. Bodlaender A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC '93.

[55]  Hans L. Bodlaender,et al.  The algorithmic theory of treewidth , 2000, Electron. Notes Discret. Math..

[56]  J. Enright,et al.  Assigning times to minimise reachability in temporal graphs , 2018, J. Comput. Syst. Sci..

[57]  Andrew V. Goldberg,et al.  On Dynamic Approximate Shortest Paths for Planar Graphs with Worst-Case Costs , 2016, SODA.

[58]  Christian Komusiewicz,et al.  The PACE 2017 Parameterized Algorithms and Computational Experiments Challenge: The Second Iteration , 2017, IPEC.

[59]  Detlef Seese,et al.  Easy Problems for Tree-Decomposable Graphs , 1991, J. Algorithms.

[60]  Rolf Niedermeier,et al.  Adapting the Bron–Kerbosch algorithm for enumerating maximal cliques in temporal graphs , 2016, Social Network Analysis and Mining.

[61]  Dieter Kratsch,et al.  Treewidth and Minimum Fill-in on d-Trapezoid Graphs , 1998, J. Graph Algorithms Appl..

[62]  Thomas Erlebach,et al.  On Temporal Graph Exploration , 2015, ICALP.

[63]  Bernard Mans,et al.  On the treewidth of dynamic graphs , 2011, Theor. Comput. Sci..