Virtual and biomolecular screening converge on a selective agonist for GPR30

Estrogen is a hormone critical in the development, normal physiology and pathophysiology1 of numerous human tissues2. The effects of estrogen have traditionally been solely ascribed to estrogen receptor α (ERα) and more recently ERβ, members of the soluble, nuclear ligand–activated family of transcription factors3. We have recently shown that the seven-transmembrane G protein–coupled receptor GPR30 binds estrogen with high affinity and resides in the endoplasmic reticulum, where it activates multiple intracellular signaling pathways4. To differentiate between the functions of ERα or ERβ and GPR30, we used a combination of virtual and biomolecular screening to isolate compounds that selectively bind to GPR30. Here we describe the identification of the first GPR30-specific agonist, G-1 (1), capable of activating GPR30 in a complex environment of classical and new estrogen receptors. The development of compounds specific to estrogen receptor family members provides the opportunity to increase our understanding of these receptors and their contribution to estrogen biology.

[1]  James G. Nourse,et al.  Reoptimization of MDL Keys for Use in Drug Discovery , 2002, J. Chem. Inf. Comput. Sci..

[2]  K. Korach,et al.  Update on animal models developed for analyses of estrogen receptor biological activity , 2003, The Journal of Steroid Biochemistry and Molecular Biology.

[3]  P. Mahadevan,et al.  An overview , 2007, Journal of Biosciences.

[4]  Bruce S Edwards,et al.  High‐throughput flow cytometry: Validation in microvolume bioassays , 2003, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[5]  David Weininger,et al.  SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules , 1988, J. Chem. Inf. Comput. Sci..

[6]  Rachel Schiff,et al.  Estrogen-receptor biology: continuing progress and therapeutic implications. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[7]  Mark A. Murcko,et al.  Virtual screening : an overview , 1998 .

[8]  Rebecca L Rich,et al.  Kinetic analysis of estrogen receptor/ligand interactions , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[9]  David S. Goodsell,et al.  Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function , 1998, J. Comput. Chem..

[10]  K. Korach,et al.  The Multifaceted Mechanisms of Estradiol and Estrogen Receptor Signaling* , 2001, The Journal of Biological Chemistry.

[11]  A. Tversky Features of Similarity , 1977 .

[12]  K. Bland,et al.  Estrogen-induced activation of Erk-1 and Erk-2 requires the G protein-coupled receptor homolog, GPR30, and occurs via trans-activation of the epidermal growth factor receptor through release of HB-EGF. , 2000, Molecular endocrinology.

[13]  T. T. Tanimoto SECTION OF BIOLOGICAL AND MEDICAL SCIENCES AND DIVISION OF MATHEMATICS: A NONLINEAR MODEL FOR A COMPUTER‐ASSISTED MEDICAL DIAGNOSTIC PROCEDURE* , 1961 .

[14]  K. Balakin,et al.  Rational Design of GPCR‐Specific Combinational Libraries Based on the Concept of Privileged Substructures , 2005 .

[15]  Thomas D. Y. Chung,et al.  A Simple Statistical Parameter for Use in Evaluation and Validation of High Throughput Screening Assays , 1999, Journal of biomolecular screening.

[16]  David S. Goodsell,et al.  Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function , 1998 .

[17]  Tudor I. Oprea,et al.  Strategies for compound selection. , 2004, Current drug discovery technologies.

[18]  J. Dong,et al.  Identity of an estrogen membrane receptor coupled to a G protein in human breast cancer cells. , 2005, Endocrinology.

[19]  Tudor I. Oprea,et al.  Flow cytometry for high-throughput, high-content screening. , 2004, Current opinion in chemical biology.

[20]  Sean M. Biggs,et al.  Techniques: GPCR assembly, pharmacology and screening by flow cytometry. , 2004, Trends in pharmacological sciences.

[21]  Jeffrey W. Smith,et al.  MT1-MMP Initiates Activation of pro-MMP-2 and Integrin αvβ3 Promotes Maturation of MMP-2 in Breast Carcinoma Cells , 2001 .

[22]  J. Edward Jackson,et al.  A User's Guide to Principal Components: Jackson/User's Guide to Principal Components , 2004 .

[23]  Tudor I. Oprea,et al.  Integrating virtual screening in lead discovery. , 2004, Current opinion in chemical biology.

[24]  P. Goodford A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. , 1985, Journal of medicinal chemistry.

[25]  A. Strongin,et al.  MT1-MMP initiates activation of pro-MMP-2 and integrin alphavbeta3 promotes maturation of MMP-2 in breast carcinoma cells. , 2001, Experimental cell research.

[26]  F. Bigi,et al.  Clay/Water Mixtures − A Heterogeneous and Ecologically Efficient Catalyst for the Three‐Component Stereoselective Synthesis of Tetrahydroquinolines , 2001 .

[27]  Eric R. Prossnitz,et al.  A Transmembrane Intracellular Estrogen Receptor Mediates Rapid Cell Signaling , 2005, Science.

[28]  S. Pickett,et al.  GRid-INdependent descriptors (GRIND): a novel class of alignment-independent three-dimensional molecular descriptors. , 2000, Journal of medicinal chemistry.

[29]  J. E. Jackson A User's Guide to Principal Components , 1991 .

[30]  J. Andrew Grant,et al.  A smooth permittivity function for Poisson–Boltzmann solvation methods , 2001, J. Comput. Chem..

[31]  P. Várnai,et al.  Visualizing Cellular Phosphoinositide Pools with GFP-Fused Protein-Modules , 2002, Science's STKE.